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Nanoscopic Water Chemistry, Biology
water confined on nm length scale Geology, Materials

Nafion fuel cell membrane

waterorganic phase

surfactant

head group counter ion

reverse micelle

w characterizes size

w0 is directly related to 
the micelle radius

w0

w0 =
H2O[ ]

surfactant[ ]

Nanopool diameter can range 
from < 1 nm to ~30 nm.
w0 = 2 1.7 nm  (~40 H2O)
w0 = 5 2.4 nm  (~300 H2O)
w0 = 10 4.0 nm  (~1000 H2O)
w0 = 20 7.0 nm  (~5400 H2O)
w0 = 40 17 nm   (~77,000 H2O)
w0 = 60 28 nm   (~350,000 H2O)
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How Does Nanoscopic Confinement How Does Nanoscopic Confinement 
Change the Properties of Water?Change the Properties of Water?

Over what distances are the properties of water changed by confinement?

Properties of Water Properties of Water -- Hydrogen Bond Network  and Its EvolutionHydrogen Bond Network  and Its Evolution

Structure constantly 
changing.

Water Water can make up to 
4 hydrogen bonds.
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Strong bonds become weak.
Weak bonds become strong.
Bonds form.
Bonds break.
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IR Spectroscopy of Water Hydroxyl StretchIR Spectroscopy of Water Hydroxyl Stretch ––
Direct Probe of Hydrogen Bond Network and Its DynamicsDirect Probe of Hydrogen Bond Network and Its Dynamics

Four Experimental Observables

1.  Absorption spectra – FT-IR measurements

2.  Vibration population relaxation – Ultra fast IR pump-probe measurements

3.  Orientational relaxation – Ultrafast IR pump-probe polarization measurements

4   Spectral diffusion – Ultrafast IR vibrational echo measurements 
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Linear absorption spectra blue shift as water nanopool gets smalLinear absorption spectra blue shift as water nanopool gets smallerler

d (nm)       # H2O 
water - -
w0 = 60 28            350,000
w0 = 40        17            77,000
w0 = 20        7.0           5400
w0 = 10        4.0           1000
w0 = 5          2.4           300
w0 = 2          1.7           40        

hydroxyl stretch (OD of 5% HOD in H2O)
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C2(t) is the orientational correlation
function for a dipole transition (second order Legendre polynomial).
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Ultrafast IR Wavelength Selected Polarized IR PumpUltrafast IR Wavelength Selected Polarized IR Pump--Probe ExperimentsProbe Experiments
Population Relaxation and Orientational Relaxation
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Vibrational Population Relaxation Slows as Water Nanopool Gets SVibrational Population Relaxation Slows as Water Nanopool Gets Smaller.maller.

d (nm)       # H2O 
water - -
w0 = 60 28            350,000
w0 = 40        17            77,000
w0 = 20        7.0           5400
w0 = 10        4.0           1000
w0 = 5          2.4           300
w0 = 2          1.7           40        

w0 = 2 5.2 ps
w0 = 5 4.4 ps
w0 = 10 2.7 ps
w0 = 20 2.1 ps
w0 = 40 1.7 ps
w0 = 60 1.8 ps
water 1.7 ps
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Orientational Anisotropy RelaxationOrientational Anisotropy Relaxation

exponential decays

d (nm)       # H2O slowest  component
water - - 2.7 ps
w0 = 60 28            350,000 2.7 ps
w0 = 40        17            77,000 2.8 ps
w0 = 20        7.0           5400 3.0 ps
w0 = 10        4.0           1000 18  ps
w0 = 5          2.4           300 30  ps
w0 = 2          1.7           40        50  ps

hydroxyl stretch (OD of 5% HOD in H2O)
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Relaxation slows with decreasing size.
nonexponential decays
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Ultrafast 2D Infrared Vibrational Echo Spectroscopy
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frequencyω(0)

A particular hydroxyl
stretch (strong) at t = 0.

absorption 
spectrum

Spectral Diffusion

ω(t)

Measure spectral diffusion hydrogen bond network evolution

frequency at t = 0 ω(0)

frequency at t ω(t)

Frequency-Frequency Correlation Function FFCF
Probability that ω(t) is same as ω(0) averaged over all starting frequencies.
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The FFCF is the connection between 
microscopic water models and experimental observables. M.D. Fayer
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Detailed 2D IR vib. echoes and simulations (Skinner) of bulk water have determined
the nature of the hydrogen bond network motions that occur on different time scales.

Short times – very local H-bond length changes.  
Long times – global H-bond network randomization.
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Spectrally Resolved Vibrational EchoesSpectrally Resolved Vibrational Echoes

Detailed fitting of FFCF to full
set of decay curves and linear
spectrum for each size shows:

fastest components, very local
motions, change somewhat,

major change in slowest component,
global hydrogen bond network
rearrangement slows dramatically 
as water nanopool becomes smaller.
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The vibrational echo peak shift is determined by the
frequency-frequency correlation function.
As Tw increases, 
there is more spectral diffusion that
makes the vibrational echo decay faster, and
reduces the peak shift.
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Orientational relaxation and spectral diffusion are intimately related to 
H-bond network evolution.
Core and shell H-bond networks are continuous.
Dynamics in the core and shell are coupled through the H-bond network.
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core Complete orientational relaxation
and
complete spectral diffusion
require randomization of the
H-bond network.
Core-shell dynamics coupled.

Core-shell exchange time very slow.
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Proton Transfer in Nanoscopic Water Proton Transfer in Nanoscopic Water –– Photoacid DynamicsPhotoacid Dynamics
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How does nanoscopic water dynamicsHow does nanoscopic water dynamics
influence proton transfer?influence proton transfer?

Sulfonates and Na+ counter ions same as 
head groups and counter ions of AOT.
A variety of experiments (anisotropy decays,
spectra) demonstrate that
HPTS in water nanopool, not associated with
AOT head groups or buried in surfactant.
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First,  what happens in bulk water.First,  what happens in bulk water.
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MPTS – methyl rather than OH.
No proton transfer.

HPTS

Pump – 405 nm; probe 540 nm
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HPTS – pump 405 nm; continuum probe
deprotonated
excited state
absorption

deprotonated
stimulated
emission

protonated excited 
state absorption

Time LineTime Line
Stoke’s Shift

~1 ps
Proton Transfer – Non-Local – Migration

~100 ps
Initial Proton Transfer – Local

~5 ps

Detailed MCD and polarization studies show that none of the dynamics involves shifting of the
electronic excited states of the protonated form following optical excitation. M.D. Fayer
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Model and FittingModel and Fitting

Formation of charge-transfer complex.  
Four coordinate hydrogen bond complex 
becomes three coordinate hydronium ion.
Establish equilibrium.
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hν
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hν

k1
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+- -
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+- -
+

k2

k-2

Charge separation.  
A more global rearrangement of 
hydrogen bond network is required to 
separate the anion and hydronium.
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425 nm – protonated decrease

550 nm – deprotonated increase

k1 = 0.03 ps-1

k-1 = 0.08 ps-1

k2 = 0.05 ps-1 

k-2 = 0

Solve differential equations for above model.  Fit data.Solve differential equations for above model.  Fit data.
Fits include: Stoke’s shift, formation of charge-transfer complex, charge separation.

P. Leiderman, L. Genosar, and D. Huppert, J. Phys. Chem. A., 109, 5965 (2005).
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On to Nanoscopic Water On to Nanoscopic Water –– AOT Reverse MicellesAOT Reverse Micelles
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Because the excited state lifetimes 
are so long, the steady state fluorescence
spectra reflect the end points of the 
photoinduced proton transfer but prior
to recombination on the ground state
surface.
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transient absorbance – 540 nm

water
w0 = 40, 20, 10

w0 = 3
w0 = 4
w0 = 5
w0 = 7

The proton transfer dynamics have a 
well defined size dependence similar to
the dynamics of nanoscopic water in AOT.
Nanoscopic water dynamics first deviates from
bulk at w0 = 10 rather than 7.
The largest sizes (d = 17 nm, 7 nm, and 4 nm)
show no size dependence and are almost the
same as bulk water.  The difference is the long
time asymptotic value.
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The proton transfer dynamics in 
nanoscopic water are fit with the 
same model used for  bulk water. 
The same quality of fits are obtained
over all times and wavelengths.
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transient absorbance – 540 nm

water
w0 = 40, 20, 10

w0 = 3
w0 = 4
w0 = 5
w0 = 7

sample k1 k-1 k2 k-2 Keq

water 0.033 0.079 0.048 0 ∞
w0 = 40, 20, 10 0.024 0.041 0.039 0.0004 57
w0 = 7 0.020 0.031 0.015 0.002 5.2
w0 = 5 0.017 0.029 0.009 0.003 1.6
w0 = 4 0.021 0.046 0.009 0.005 0.8
w0 = 3 0.013 0.039 0.011 0.007 0.5

1 2

1 2

Keq
k k

k k− −

=

k1 – initial forward proton transfer kinetics slow as 
water nanopool becomes smaller

− becomes smaller as nanopool gets smaller.
Less generation of “free” protons.  Long
time off-set increases.

Smallest reverse micelles, w0 = 4 and 3, d < 2 nm, don’t
fall all trends.  Head group water shell, 0.4 nm thick.
HPTS contacting interface? 
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Nafion fuel cell membraneNafion fuel cell membrane
Teflon with side chains, 
sulfonate head groups.

--[(CF2-CF2)n-CF-CF2]m--

(O-CF2-CF-O-CF2-CF2-SO3
-M+

CF3

--[(CF2-CF2)n-CF-CF2]m--

(O-CF2-CF-O-CF2-CF2-SO3
-M+

CF3Nanoscopic water channels, proton transport.

hydroxyl stretch (OD of 5% HOD in H2O)

2400 2500 2600 2700

0.0

0.2

0.4

0.6

0.8

1.0

ab
so

rb
an

ce
 (n

or
m

al
iz

ed
)

frequency (cm-1)

bulk water
λ = 9
λ = 7.5
λ = 5
λ = 3
λ = 1

hydroxyl stretch spectra

λ – number of water molecules per 
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hydroxyl stretch (OD of 5% HOD in H2O)

Orientational Anisotropy Decays and Simulations of Water in NafiOrientational Anisotropy Decays and Simulations of Water in Nafion on NanochannelsNanochannels
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Simulations – Voth and Co-workers
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Decays are non-exponential – comparison of slowest components 
that leads to complete randomization.
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Proton Transfer in Nanoscopic Water Channels Proton Transfer in Nanoscopic Water Channels –– HPTS in NafionHPTS in Nafion
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Like the HPTS experiments in AOT reverse micelles,
as the water channels contain less water, proton transfer
dynamics slow.
Nafion becomes a proton transport membrane for λ > 5.
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Key Points

Water dynamics slow dramatically in reverse micelles with small water nanopools, 
particularly H-bond network global structural rearrangement.  

Photoacid HPTS experiments in bulk water occur on three time scales, Stoke’s shift,
local charge transfer complex formation, and proton migration.
Excellent agreement between data and model calculations.

Photoacid HPTS proton transfer dynamics unaffected in large reverse micelles,
but slow dramatically in small water nanopools.  Equilibrium constant
shift, less dissociation

Water dynamics slow substantially in water nanochannels of Nafion membranes
in a manner akin to reverse micelles.
Simulations do a good job of reproducing orientational relaxation.

HPTS photoacid experiments in Nafion water channels show the influence of
channel size (amount of water per head group) on proton transfer dynamics.
Proton transfer dynamics slow significantly as water content is reduced.
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