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Theoretical analysis of two-step holographic recording with high-intensity pulses
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We develop a full numerical as well as an approximate analytic solution for two-step holographic recording
with high intensity pulses in LiINb@Fe crystals. We find the unknown material parameters by fitting the
numerical solution to the experimental results. The two important parameters that were unknown so far and
found in this work are the bulk photovoltaic coefficient and absorption cross section for the excitation of the
electrons from small polarons in LiNkQvith infrared light. We show that the approximate analytic solution
agrees very well with the numerical solutiéas well as the experimental restilfsr most practical applica-
tions. We use the analytic solution to explain the experimental observations that were not understood before.
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. INTRODUCTION LiNbOj3:Fe crystals with green pulses for sensitization and
infrared pulses for recording.

Photorefractive crystals are excellent candidates for vol- Most of the initial two-step holographic recording experi-
ume holographic storagd—3]. A major obstacle in making ments were performed with high intensity pulses in congru-
practical read/write holographic memory systems has bee@nt LINbO; [8,10-13 and LiTaQ, [13] crystals. More re-
nonpersistencéor destructive readoybf the stored informa- ~ cently, two-step recording experiments using stoichiometric
tion. Thermal fixing[4] and electrical fixing5] are the two ~ LINDOj3 crystals with cw light were reported4—18. The
major nonoptical methods for obtaining persistence. How:shallower traps in two-step recording in LiNg®e and
ever, they require heating the sample or applying large eled-INPO3:Cu are due to the small Nbpolarons caused by
tric fields. All-optical methods for persistent holographic re-niobium on the lithium sit¢19,20.

cording include frequency-difference holograf63, readout A two-center model for two-step recording with the light
with wave-vector spectrd7], and gated recording8,d]. of only one wavelengtlisame wavelength for sensitization

Among all the methods proposed, gated recording is thglnd recording was proposed21]. However, a theoretical

- - ' ; analysis of the two-step persistent storage in Liyit@ is
most promising one for ohtaining persistent read/write holo still missing. The question is whether the iron-polaron model
graphic memories.

. . . . an describe quantitatively the obtained experimental results
Gated holographic recording relies on the_ existence o sing the charge transport parameters known for LifbO
two sets of trapsshallower and deeper trapaith energy  fom the [iterature. The aim is to achieve a model and a

levels in the band gap of the recording crystal. These trap§arameter set that explairal photorefractive features of
can be due to doping by impuritiesfor example,  congruent LINbQ, at low and high light intensities, for one-
LINbO3:Fe:Mn crystald9]) or (at least one set of trapsan  and two-step recording. A full theoretical description and
be due to intrinsic trapE8] (polarons, bipolarons, efc.We  understanding of the processes is highly desired, because
refer to recording using the former as “two-center record-then the optimum performance of the material and the con-
ing” and to that using the latter as “two-step recording,” ditions to achieve this performance can be predicted. Fur-
since intrinsic defects can occur in a very high concentrationhermore, there are several experimental observations that
enabling direct charge transfer between the shallower and theave not been explained yet. Having a reliable model is very
deeper traps. Recording is performed by the simultaneouselpful in understanding the physical mechanisms respon-
presence of a sensitizin@r gating beam of shorter wave- sible for two-step recording and the explanation of the ex-
length (higher photon energyand two recording beams of perimental observations. First general attempts of a formal
longer wavelengttilower photon energy Electrons are ini- analysis of the processes involved in different two-step re-
tially in the deeper trap&hallower traps are initially empty  cording schemes were performed only for materials with
Sensitizing light causes the electron transfer from the deepetegligible bulk photovoltaic effedi22].
traps to the shallower traps. The hologram is recorded by the In this paper, we present a full theoretical analysis of
recording beams using the electrons from the shallowetwo-step holographic recording in LiN@Fe crystals with
traps. The final hologram is imprinted in the deeper trapshigh intensity green pulses for sensitization, and infrared
and persists against readout with the light of longer wavepulses for recording. We start with the two-center model and
length (same as recording wavelengthin this paper, we first develop a full numerical solution of the governing equa-
mainly consider two-step holographic recording intions without any approximation. We compare the numerical
solution with the experimental results to compute two un-
known parameters of the shallow polaron levels in congruent
*Present address: Georgia Institute of Technology, School oEiNbO; at infrared. Since the variations of the holographic

Electrical and Computer Engineering, Atlanta, GA 30332. recording properties during one short pulse are small, we
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solution to the governing equations within one pulse width. He-Ne — ,
We then use the appropriate initial conditions at the begin- laser ]
ning and at the end of each pulse to obtain analytic formulas polarizer e
for major holographic recording parameters at all time. A

After finding the analytic formulas for the saturation : |
space-charge field and the recording time constant of a ho- delay ﬁ !

. . . . —— photo-

logram, we use some approximations to simplify the equa- > diodes LINbO,! 7 3
tions for explaining all experimental observatidirscluding - I I/ 3

those that were not explained befpbased on simple physi- 1
cal principles. For normal recording in LiNRQone set of
traps, one light wavelengththe formulas for the saturation

mirror

space-charge fieldH|s,wraiod @nd recording time constant : 1 N
o R
kpNp | 1 beam-
E| __"DDR ) 1 Ailter splitter
saturation eMno l ﬂ _U_ __ |_nf£]r2d_ L
1 eung Nd:YAG
—= , 2 = B green pulse laser
Ty €E€p U
are well known. In these equationsp , €€, u, ande are FIG. 1. Schematic drawing of the experimental setup for two-

the bulk photovoltaic constant of the deep trefsr ex-  step holographic recording.

ample, Fe in LiNbQ:Fe), permittivity of LINbO;, electron

mobility in the conduction band, and electronic charge, reFe ions are present in LiNhCFe crystals. Typically ratios of
spectively. Furthermoré\l; , ny, andl are the averagéor ~ Cre+/Cre+ in the range from 0.01 to 1 can be adjusted eas-
dc) electron concentration in the deep traps, average electrdl- ) o ) )
concentration in the conduction band, and the amplitude of Figure 1 shows a schematic illustration of the holographic
the space-varying part of the recording intensity, respecS€tuP- AQ-switched Nd:YAG laser with a frequency doubler
tively. Our theoretical analysis shows that we can also us8roduces simultaneously infrared 1064 nm, pulse dura-

) o - tion 25 ng and green X=532nm, pulse duration 15 ns
Elclsa(r% ?ndb(Z)NfE) ' thns;?]p rec(ct)r:ilr\llglﬁgvseosfl?}2%?&';‘:}3? ordinarily polarized TENj, light pulses. The repetition rate
D 0 BY Nxo.ave 0,ave of the system used is only about 0.1 Hz. A dielectric beam

ponents of the electron concentrations in the shallower rapg,jiser separates the infrared and green light. An additional
and in the conduction band, respectively, time-averagefeam splitter divides the infrared light into two coherent
within one pulse width This is a major step in understand- peams of equal intensity. These beams enter the crystal sym-
ing the dominant processes in two-step holographic recorc1'T1etrically in a plane containing the crystalts axis. The

ing, and explaining all the experimental results. green pulse enters the sample simultaneously or with a delay
of up to 100 ns achieved by an optical path difference.
Il. EXPERIMENTS Holographic readout is performed by low intensity ordi-

. - narily polarized continuous-wave HeNe laser light (
Melt-doped single domain LiNbOFe samples grown by =633 nm) entering the crystal under the Bragg angle. Pho-

the Czqchralskl technique are |nvest|ggted. The total Fe CONodiodes behind the sample detect transmitted and diffracted
centrationce, of the samples is determined by x-ray fluores- jignt intensities. The diffraction efficiency is defined as the
cence and atomic absorption spectroscopy. The samples cofyig of the intensities of the diffracted and total transmitted
tain typically between 370 and 1070 mol ppm Fe. Thejight. From Kogelnik's formula[25], we then calculate the
uncertainties of the determinext, values are about-15%.  refractive index changes. The intersection angle of the infra-
The valence states of the Fe ions are varied by suitablged pulses and the light wavelength determine the fringe
annealing treatmentf23]. Heating in pure oxygen atmo- spacingA. This A value is in the employed transmission
sphere, e.g., to a temperature of 1000 °C, tends to oxidize thgeometry typically about 1 to Zzm. Neutral density filters
ions to Fé", whereas heating in argon atmosphere orprovide variations of infrared and green light intensities.
vacuum(low oxygen partial pressurgields a reduction of Figure 2 illustrates a typical hologram writing and erasing
the ions to F&". cycle. The time scale corresponds to the exposure time of the
Determination of the concentratiorge+ and ces+ is  green @ =532nm) light. The circles represent experimental
based on Mssbauer experimentgﬂl From the comparison data and the SO|Id lines are expo_nential fItS taking into ac-
of the Mdssbauer results with optical absorption measurecount absorption effect26]. Typical total infrared and
ments, the oscillator strengths of the bands are calculate@f€en light intensities ard 106,=250 GWm = and 53
[24]. The absorption coefficient at 477 nm for ordinarily po- — 110GWm*.
larized light, determined by a Cary 17 D spectrometer, yields
Cre+. Then,cpgs+ can be determined because the entire Fe
concentration of the crystal is known, and the $dbauer The two-center charge transport model for LiNpBe
results clearly demonstrate that only’Fend Fé" states of was introduced in 1993 by Jermann and Oft2h|. Figure 3

Ill. TWO-CENTER MODEL
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energy to excite electrons from Feeither into the conduc-
tion band or into the secondary centers, or fron{:Nmto

the conduction band. Infrared liglitvavelength 1064 nim
however, has a smaller photon energy that is sufficient to
- excite electrons from N into the conduction band, only.
Excitation and recombination of the electrons can be de-

20x10°H

15

5 10 RECORDING READOUT ERASURE_ scribed by the rate equatioﬁgl]
inf d .
r 5?;:n infrared green INF, - -
5 | _ t = — [dreSret ArexSrex(Nx— Ny ) ]I gNge
o 1 T (Y + YrexNx ) (Nre— Npo), 3)
0 4 8 12 16 B
Time (us) JINy
ot [Bx+dx,cSx,cl c T Ax,IrSx,IRN IR
FIG. 2. Refractive-index amplitud&n of a holographic grating
during a typical writing and erasing cycle. The circles illustrate the + Yxrd Nee— Ngo) INy
experimental data and the solid lines are monoexponential fits tak-
ing into account absorption effedi®6]. The time scale corresponds + (yxN+ qrexSrex! cNEo) (Nx— Ny ). (4)

to the exposure time of the greek €532 nm) light. During the

first 4-us infrared and green lightwavelengthsA =1064nm, N All symbols are introduced in Table I. Excitation of electrons

=532nm; intensities! 105~ 250 GWM %, I53,=110GWm?) are  from NK'' is possible by green lightwavelength 532 nin

simultaneously present. The nexp8-readout of the hologram with 5,4 by infrared lightwavelength 1064 nin Thus, we added

one of the infrared writing beams joo;=125 GWNT?, I53,=0) is Eq. (4) a generation term to account for the presence of

performed. After this second step, the hologram is erased by greeflq infrared light. Some parameters have a subsci@t 6r

light (1106¢=0. 153,= 110 GWNT?). “IR” to indicate whether they correspond to green or infra-
red light.

shows the band diagram of a LiNg®e crystal. Electrons Wg treat the situation where the light intensity and there-

can be excited from Fé by light either into the conduction fore all other spatially dependent quantities vary only along

band or into NB" forming NK!". Direct excitation into NB  one direction. The coordinate along this directiox.ighen,

requires that there are always some Neenters close to the current, continuity, charge, and Poisson equations are

each Fé&". This is the case, because Nbs an intrinsic

defect that occurs in a very high concentratjd®,20. The an

electrons in the shallower i traps can be excited to the |=€unE+keNed ot kx,eNxlet xxrNx iRt ukeT -,

conduction band by light or thermally. Otherwise, they re- (5)

combine directly with the iron ions where they come from.

The conduction-band electrons can recombine either with

Fe** or with N®;". The iron level is “deep” and the polaron a__ MNee Ny  n , (6)
level is often called “shallow,” although these words have a IxX at Jgt ot
different meaning in semiconductor physics, where shallow
levels are characterized by a strong thermal generation rate. p=—€(Ngt Ny +n—Npy), )
Green light(wavelength 532 ninhas sufficient photon
JE
| Conduction Band | X €e€g
Photon
[ Drift, bulk photovoltaic, and diffusion currents are consid-
o Photon p— ered. All symbols are introduced in Table I.

Jermann and Otten determined a set of parameters, which
describes excellently all photorefractive features of
Fel™ LiNbOs:Fe observed in the experiments with the green light

at continuous-wave and at pulsed laser intensj2d$ Their
parameter set will be also employed in this work. Thus, our
Viileries Bhi] model is immediately consistent with all usual photorefrac-
tive properties of LiNbQ:Fe for recording with light of one

FIG. 3. Band diagram of the charge transport situation in conWavelength. Only two of the many parameters occurring in
gruent iron-doped lithium niobate (LiNb{ The arrows indicate  EQs.(3)—(8) are new and unknowrjy Sy, ir andxx g, the
excitation and recombination of electrons. A detailed description igohoton absorption cross section and the bulk photovoltaic
given in the text. coefficient of Ni§;/>* for excitations with infrared light.
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TABLE |. Units, meaning, and values of all quantities involved in the analysis of two-step holographic recording in;tigbO
Subscripts “0” and “1” are added in the text to the spatially dependent quantities to indicate zeroth and first Fourier components. Values

in parentheses show standard values, which are valid if nothing else is mentioned.

Quantity (unit) Meaning Value Reference
Parameters of Fe
Nee(m™3) Total concentration of Fe 12107
N (m3) Concentration of F& variable
QreSre (M?J) Absorption cross section of Hefor absorption of 1.0x10°° [21]
a photonand excitation of an electron from Eé
into the conduction bandight wavelength 532
nm)
Ve (M¥/S) Coefficient for recombination of conduction band 1.65<10 [21]
electrons with F&"
— Kpe(MV) Bulk photovoltaic coefficient for excitation of electrons 3.5x10° % [21]
from FE" into the conduction bandight
wavelength 532 nin
Parameters of Nb
Ny (m™3) Total concentration of Nb 10%° [19], [20], [21]
Ny (m™3) Concentration of Nff variable
Bx(s™h Rate of thermal excitation of electrons from b 0 [21]
into the conduction band
Ox,Sx.c (M?J) Absorption cross section of I for absorption 5.0x10°° [21]
of a photonand excitation of an electron into the
conduction bandlight wavelength 532 nin
Ox, 1rSx, ik (M) Absorption cross section of i for absorption 5.4x10°° [this work]
of a photonand excitation of an electron into the
conduction bandlight wavelength 1064 njn
vy (M3/s) Coefficient for recombination of conduction band 0 [21]
electrons with Nf"
— kx.c (MIV) Bulk photovoltaic coefficient for excitation of electrons 21.2x10°%3 [21]
from Nb"" into the conduction bandight
wavelength 532 nin
— kxR (M) Bulk photovoltaic coefficient for excitation of electrons 32x10° % [this work]
from Nb"" into the conduction bandight
wavelength 1064 nin
Parameters related to Fe and,Nb
OrexSrex (M°1J) Absorption cross section of Hefor absorption of 3.22x10 %° [21]
a photonand excitation of an electron into Np
(light wavelength 532 nin
Yxre(M/S) Coefficient for recombination of electrons from 1.14x10 2 [21]
Nbl;" and Fé*
Parameters of LiNb®
€ Dielectric coefficient 28 [30], [31]
r3(m/V) Electro-optic coefficientlight wavelength 632.8 10.9x10 12 [32]
nm)
No Refractive index for ordinarily polarized light 2.286 [33]
(wavelength 632 nin
Charge transport parameters
i (A/m?) Current density variable
w (Mm?IVs) Electron mobility in the conduction band KA0 S [34]
n(m3 Density of free electrons in the conduction band variable
p (As/n) Total charge density variable
N (m™3) Concentration of nonmobile positive compensation (5.7X 1074
charge, which maintains overall charge neutrality
E (V/m) Space-charge field variable
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TABLE I. (Continued)

Quantity (unit) Meaning Value Reference
Fundamental constants
kg (J/K) Boltzmann constant 1.3810 28
€ (As/Vm) Primitivity of free space 8.8810 12
Parameters related to the experimental conditions

T (K) Crystal temperature 293

K(m™ Spatial frequency of the interference pattern >219P

A (m) Period length of the interference pattern 220 6

I (WIm?) Intensity of the spatially homogeneous green light variable
(wavelength 532 nmn

I\r (W/m?) Intensity of the infrared lightwavelength 1064 njn variable

m Modulation degree of the interference pattern of variable
the infrared light

tp (s) Duration of each green and infrared light pulse 18~ °

To study this model, we will investigate the situation of pine locally with FE". Thus, the program adds td, the

simultaneous illumination with spatially homogeneous greemyctualNy values at the end of each pulse and $éfsto zero
light and with a sinusoidally modulated infrared interference fiarwards. The created refractive index changes for ordi-

pattern narily polarized red ligh{wavelength 632.8 njnare calcu-
lir=l g o[ 1+ msin(Kx)]. (9) lated with An(x)= —(1/2)ngr13E(x), using the parameters
’ introduced in Table I.
The symbols are explained in Table I. We assume that the The time steps are always chosen so small that further
light intensity does not change with time during illumination. reduction has no influence on the calculated results. A typi-
All calculations are performed witth=0.1 and the obtained cal time step for the calculations is 1 ps, and 100 points in
space-charge fields are normalizedrtd.e., they are divided space are used to represent one period length of the interfer-

by m. ence pattern.
Numerical solution of the high intensity properties, as is
IV. NUMERICAL SOLUTION done here, benefits from one fact: the concentration of the
electrons in the conduction bamdis two or three orders of
A. Algorithm magnitude smaller than the defect concentrations. The differ-

One may argue that typical approximations like the adia€nce is much larger for low light intensities, ang¢annot be
batic approximatior{27] or Fourier development with the obtained in the way described above because of limited cal-
neglect of higher Fourier ordef&8] cannot be applied to our culation accuracy, i.en is the tiny difference of two large
situation. Therefore, Eq$3)—(9) are solved numerically in and almost completely compensating rates. Anyhow, the al-
space without any approximation. The calculations are perdorithm is fine for pulsed illumination and no approxima-
formed for one period length of the grating, and cyclic tions have to be introduced.
boundary conditions are used.

The starting condition is the steady-state situation in the B. Shape and evolution of the space-charge field
dark with a homogeneous concentration of Fewhich is

) Figure 4 shows the space-charge field pattern for different
equal to the concentration of compensatts acceptors

N / times. The space-charge field is a replica of the light pattern
Na, because the Nbcenters are initially not populated, i.€., 5nq has an almost perfect sinusoidal shape because of the
Ny =0. Calculations are done in time stef§ First, the |5 modulation depth fi=0.1) used in these simulations.
concentration patterndle(x,t+dt) and Ny (x,t+dt) are  Thys, the amplitude of the space-charge field modulation can
calculated using Eq¥3) and (4), and the valueN(x,t)  be easily determined from a sinusoidal fit to the computed
and Ny (x,t). The current density(x,t) is calculated from data. This result is a first indication that Fourier development
Eq. (5) and the concentration patterr(x,t+dt) is finally  will be a useful approach for obtaining an analytical solution
obtained fromn(x,t) and from Eqgs(3), (4), and(6). Then, to the problem.

Eq. (7) and the integration of Ed8) finally yield the space- The evolution of the space-charge field amplitude during
charge fieldE(x,t+dt). This cycle is periodically repeated recording and erasure is presented in Fig. 5. No electrons are
until the end of one light pulse is reached. The typical rep4in the N 4i+’5+ centers at the beginning of each light pulse.
etition frequency of the pulsed lasers used in the experimentshus, the green light starts to erase the previously written
is low, i.e., around 10 Hz. The time between the pulses ihologram due to direct excitation of electrons into the con-
sufficient that all electrons that were excited to/Nlsecom-  duction band and the created conductivity. However, the
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. T T T ' 2.5x10*[ ' ' ! T 10x10°
20107 I, = 500 GW/m’ i lo = 105 GWim’ _—
“ee G -
1.5 e > I, = 225 GW/m’ 20 b SIS
1.0 ]
c
os | pulse 1 i 2 sl -
E g 7| = 1°%
> 00 5 et
w5k 4 § 1.0 |- 41 4
1.0 | . o
0.5 4 2
4.5 F . s =
2.0 1 0.0 ' L L x 0
1 1 ] 1 [} 50 100 150 200
0.0 0.2 0.4 0.6 0.8 1.0 e (GWIm?)

x/A
] ) ) FIG. 6. Variation of the saturation value of the amplitude of the
_ FIG. 4. Space charge fieldversus spatial coordinatenormal-  refraciive index grating4n) and recording speed * (inverse of
ized to the grating period length. The solid line shows the com-  ocqrging time constantwith average infrared light intensityis
puted space-charge field after illumination with one, two, three,(with constant o= 105 GW/nf). The curves are calculated in terms

four, and five light pulses of high intensity {=500 GWInt, Ik of the two-center model and the symbols are experimental data.
=225GWI/n?). The dashed lines are sinusoidal fits to the calcu-

lated curves. C. Intensity and concentration dependences

4o ) The dependence of the saturation value of the created re-
Nby; is populated more and more during the pulse. Thegactive index modulations and of the recording time con-
infrared light excites electrons from this level into the con-stant on the intensities of green and infrared light were ex-
duction band, a modulated bulk photovoltaic current arisesperimentally investigatepll0,12. Furthermore, the influence
and the space-charge field grows. These processes are tbiethe initial homogeneous E& concentration on the sensi-
origin of what we observe in the saturation regime, i.e., aftettivity, i.e., on the change of the refractive index amplitude
long recording times, during each pulse at first a decreasper unit time at the beginning of the recording, and of the
and then an increase of the space-charge field amplitudéitial homogeneous concentration of°fFeon the saturation
Saturation means that erasure and recording effects compevalues of the refractive index changes were also carefully
sate each other completely. From Fig. 5 it becomes also clegletermined in several experiment,12.
that the evolution of the space-charge field during the pulse Only two parameters remain free and can be varied in
illumination can be very well approximated by a parabolicorder to explain all these dependences, the photon absorption
function. Furthermore, it can be seen that considering th&r0Ss sectiomy irSx 1r and the bulk photovoltaic coefficient
fields at the end of each pulse, growth and erasure of th&x.ir Of the NE;™/>" center for infrared light. Figures 6-9

grating are described by monoexponential functions. show impressively that all experimental results mentioned
above can be excellently described by proper selection of

i I t
I I I ) )
6 4l i 8
2.5x10° Recording Erasure | 3.0x10 = I = 225 GW/m’ 12x10
: 25+ 10
20
—~ S 20} o 8
£ 15t 5 . 2
‘u} S 15 4 6 &
1.0} = = -
1.0 | 41 4
g I = 500 GW/m’
05 : Iz = 225 GW/m 05k 4 2
0.0 N T N A TR A T 0.0 \ ! 1 L L 0
0.00 0.05 0.10 0.15 0.20 0 20 40 60 80 100
Time (us) I, (GWIm?)

FIG. 5. AmplitudeE, of the space-charge field versus exposure  FIG. 7. Variation of the saturation value of the amplitude of the
time for recording and erasure. The light intensities &pe  refractive index grating4n) and recording speeﬂ’l (inverse of
=500 GW/nt and| go=225 GW/n?f. The averaged light intensities recording time constantsvith green light intensityl g (with con-
are equal for recording and erasure. The thin vertical lines indicatetant| ;=225 GW/nf). The curves are calculated in terms of the
the end of each 15-ns-long pulse. two-center model and the symbols are experimental data.
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25x10° T T T ¥ T L to simplify the equations. We can test the validity of each
I, = 105 GW/m’ assumption by comparing results of the complete numerical
I = 225 GW/m’ A solutions with and without that assumption.
20 F N, =12x10"m* 1
"Z A. Assumptions
_ﬁ 8 i Assumption 1: We neglect the trapping of the conduction-
8 band electrons by the shallow traps during one pulse width.
_§ 1.0 . Therefore, we assume that the shallow traps are mainly
populated by direct electron transfer from the deep traps, and
05k i the conduction-band electrons are mainly trapped by the
deep traps.
' . ' . . ' Assumption 2: We neglect thermal depopulation of the
0.0 0 1 P 3 4 5 6x10% shallow traps within one pulse at room temperature. This is a
N2 (m?) valid assumption, as the lifetime of the electrons in shallow

traps is normally a few milliseconds, while the pulse width is
FIG. 8. Variation of sensitivitychanges of the amplitude of the typically a few nanoseconds.
refractive index changes per time at the beginning of recording, Assumption 3: We neglect direct electron trangfecom-
dAn/dt|,_o) with the averaged concentration of#e Nez+ (that  binatior) from shallow traps to deep traps within one pulse
is equal toN,). The light intensities arés=105GWi/nf andl\z  width. This is a valid assumption due to the same reason as
=225 GWint. The curve is calculated in terms of the two-center jp assumption 2. Combining assumptions 2 and 3 is equiva-
model and the symbols are experimental data. lent to assuming that the depopulation of the shallow traps

. , within one pulse widtha few nanosecondgss negligible.
just these two parameters. To find these two parameters, we . . -
Assumption 4: We assume that any change in the concen-

varied them over a wide range to obtain good agreemer{t . . .
i . ration of electrons in the conduction band gets to steady
between the theoretical and the experimental results a

. . sstate much faster than that in the concentration of electrons
shown in Figs. 6-9. The results obtained & rsx,ir and either trap. Therefore, in the time scale of the variation of

are shown in Table I. This success is a clear indication . L
KX IR electrons in the traps, we can assu@@ dt=0. This is

g:gﬁsth;én\?edrel ;Zlg%il)éoﬁ):?ﬁ ir]ec:(tthsaétctt?:n(sjef/(va;mv:/ri]lﬁge?/aerl?)r%h”ed the adiabatic approximati¢®7]. Numerical solutions
Very re L X > ; Rof the system of differential equations with and without this
an analytic solution and will use it to explain the experimen- . icallv th his fact has b
tal results assumption are practically the same. This fact has been re-
' ported by other authors, td&ef.[21]).
Assumption 5: We assume that the electron concentration

V. ANALYTIC SOLUTION in the conduction ban¢n) is much smaller than that in the

In this section, we develop an approximate analytic soludeep and shallow trapdNg, and Ny , respectively as well

tion for Egs.(3)—(8). To do this, we need some assumptionsas Ngs+ Ny —N,A). So, we neglech in Eq. (7).
Assumption 6: We neglect the diffusion term in E&).

‘ ' ' This is a valid assumption in LiINbQ since the major source
:szl%gzvv\"’/;’z 1 of the current is bulk photovoltaic current in the transmission
N, =22N, 3 geometry.

Numerical solutions of the governing differential equa-
3F T tions are practically the same with and without these assump-
tions. In the next section, we add more approximations to get
an analytic solution set for Eq3)—(8).

Assumption 7: We assume that the sample is short-
circuited, i.e., the electric fieldE) does not have any dc
component.

4x10*

Saturation An
N
1
A
1

B. Fourier development

0 ] 1 1
0 5 10 15x10*

N2 (m”)

We assume that with sinusoidal intensity variatidtg.
(9)] each variable in Eq$3)—(8) can be represented by the
first two terms in its Fourier series expansion. For example,

FIG. 9. Variation of the saturation value of the amplitude of the the concentration of electrons in the deep tralgg.( can be
refractive index grating An) with concentration of F&, Ngg+ represented as
(that is equal tdNg.—N,). It is assumed that the iron concentration N N N )
increases according thpe=2.2< Ngg+. The light intensities are Nge=Npeot Npe €XP(iKX). (10
I =105 GW/nt and | ,g=260 GW/nf. The curve is calculated in
terms of the two-center model and the symbols are experimentd¥sing this assumption, we can replac&ix by zero for the
data. zero-order variablege.g.,Ng,g and byiK for the first-order
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ones(e.g.,Ng.,). Replacing every variable in Eqé3)—(8) 4x10° ‘ :
with its first two Fourier expansion terms and separating the heo = 225 GWIm” I, = 105 GW/m"
equations for the zero- and first-order variables, we obtain
the following two sets of equations: 3
dNeeo _ _ T
gt~ LAreSret ArexSrex(Nx—Nyxo) ]l 6Nreo S 2
w —— Numerical Solution
+ v enO(NFe_ NI;e O) (11) - Fourier Development
1 L
dNyg .
a (dx,eSx,cl 6T Ax,1rSx, IRl 1IR0) Nx0
0 L n
- - 0.0 0.5 1.0 1.5
+ —
drexSrex! GNFed Nx—Nxo), 12 Time (us)
lezeoJr dNyo ~0 13 FIG. 10. Theoretical calculation of the space-charge field versus
dt dt 13 time during recording of a hologram using two-step recording. The
two curves are calculated using the complete numerical solution
Neeot Nyo=Na, (14)  and the approximate solution based on Fourier development with
several assumptions given in the text. The agreement between the
for the zero-order variables, and curves is excellent. The light intensities used in these calculations
arelg=105 GW/n? and | gp=1r;= 225 GWI/nt.
e _ + Nx—Nyo) 1l o+ NF,
gt~ [ArsSret drexSrex(Nx— Nxo) Ile + 7rd10)NFes is valid only for small intensity modulation deptip tom
- - - =0.8) [29]. For larger modulation depths, the space-charge
+ Y1 (Nre— NEeo) + QrexSrexNred cNx1» (15 field calculated by using the Fourier developmesith only
two terms for each variableés smaller than the actual value
dNy; (calculated by full numerical solutigrby as much as 30%
gt~ (axeSx.clet axrSxrliro (atm=1). On the other hand, modulation depths larger than

m=0.8 are hard to achieve experimentalgven with equal
+ OrexSrex! 6NFed) Nx1 T OrexSrex! 6(Nx— Nxo) Nper intensity beamsdue to the multiple reflections of the record-
_ ing beams at the entrance and exit faces of the crystal. These
~Ax,IrSx,IRNxol IR1. (16 reflections reduce the modulation depth by increasing the dc
] _ _ light intensity. Therefore, the actual experimental modula-
: :f(dNFe1+ dNy, 17) tion depth for equal intensity beams is about0.8, and the
J1 K\ dt dt actual experimental space-charge field is smaller than that
calculated usingn=1 by about 20%. This makes the Fourier
ji=eunoE;+ kpd GNpert (kx 6l ot kxRl IR0) Nx1 developmeniwith the first two Fourier terms of each vari-
3 able a better approximation than the complete numerical
+ kx,1IRNxol IR1 (18) solution for the actual measured values of space-charge field
) at high modulation depths. A similar argument holds for the
=_—Ie(N‘ NG (19 validity of assuming linear variation of the space-charge field
Keey et X7 with the modulation deptim that we used in the numerical
solution.
for the first-order variables. The goal is to find the first Fou-
rier term of the space-charge fiel&) that can be used to
find the change in the index of refraction through electro-
optic effect. To findE;, we first need to solve the equations  To solve the zero-order equations, we first put EG4)
for the zero-order variablelEqgs. (11)—(14)]. We can then and(12) into Eq(13) and useNg,,=Na— Ny, from Eqg.(14)
put the zero-order variables into the first-order equations angb find ny in terms ofNy,,
find E;. To check the validity of the above assumptions, we
solved the given zero- and first-order equationgh all as- No
sumptions appliednumerically. Figure 10 shows the varia- UreSrd sNat(0x 6Sx 6l 6H0x 1rSx 1kl IRo—TreSrd 6) Nxo
tion of the space-charge fiel, with time during recording. = — — .
The same variation calculated by the exact numerical solu- Yre Nre™ Nat Nyo)
tion is also shown in Fig. 10, confirming the validity of all
assumptions and approximations.
Note that the use of only two Fourier componefgsro  Therefore, we only need to solve b, . This can be done
and first order for each variable in the governing equations by puttingNg.,=Na— Ny, into Eq.(12) to obtain

Ey

C. Solution of the zero-order equations

(20

023813-8
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dNyg

- where
TZQFeXSI:e)('G(Nxo)2
—[(ax,6Sx,6 1 ArexSrex(Nx+Na))l g ;e 1
_ X Syglgt Sy 1kl IR0t Srex(Nyx+Np)l g
+ Gy rSx 1l 1ro]Nxo + OrexSred sNxNa,  (21) ax,6Sx,6! 6 T Ax,IRSx,IRN RO T AFexSrex(Nx T Na)l g

(29

with the initial condition beingNy,(t=0)=0.

. Using the parameter values from Table | and assuming sen-
Assumption 8: We assume that 9 P 9

sitizing and recording intensitiesl § and | zg) of about
Sel <(NTA)2< Sea(Nu+ NN 22 10?W/m?, we obtainr,=100ns. For a pulse width df,

AroxSrex! 6(Nxo) "< QraxSrox(Nx NaJNxo 22 =15ns, we can calculate -dexp(—t,/7)=0.14. Forlg

=1 ro=10"W/m? and the same pulse width, we obtain 1

or —exp(—t,/7,)=0.015. Therefore, we can use the following
approximation for the time within one pulse width<(t,):
Nxo<Nx+N,. (23
t
Since we usually havbl,<Ny, the assumption of Eq23) 1-—exp(—t/r)=—. (26)
is equivalent to assuming that only a very small portion of T

the shallow traps is populated during one pulse width by

electron transfer from the deep traps. Using this assumptionyith this approximation, we can summarize the zero-order
we can neglectirSrex! 6(Nxo)? in Eg. (21) and solve for  variables as

Ny, to obtain

Nxo= 0rexSrex| GNxNAat, (27)
_ drexSrex! GNxNal1—exp(—t/7,)]
NXO_qX,GsX,GIG+qX,IRSX,IR| IR0+ QrexSrex(Nx+Na)l G _
(24 NEeo= Na— QrexSrex! GNxNat (28)
|
.- dreSrd cNat (Ax,6Sx,6l 6+ Ax,IRSx, IRl IR0~ OFeSFel 6)Nxo
0 YrNre= Na+Nyo)
dx.cSx.cl o+ dx.IrSx, IR - e reSrd
_ quSFelGNA X,G°X,G' G X,IR®X,IR' IRO NFe_NA Fe°F Gq . NNt et (29)
Ve Nge=Np) YedNge=Np) FECReCGTXTA 007 ot
|
where we used a binomial expansion of the denominator on D. Solution of the first-order equations
the right-hand side of Eq29) to obtain a solution in the
form of ny=nge+ Ny t. More specifically, we used We can put the solutions of the zero-order equations into
first-order equationgEgs. (15—(19)] and solve them. To
_ solve the first-order equations, we first combine Ed®)
1 _ 1= Nyo/(Nee=Na) (30) and (19) to obtain
Nee—Na+t Ny Nee—Na
. . iezﬁ’«no _ _ _
Furthermore, any term that includetlf,)? was neglected. Ji=— TGO(NFGPL Ny1) + kpd 6Nper+ (kx.6lo

Note that we could have obtained the same result by as-
suming that the variables do not change much during one
pulse width and approximating each variable by the first two + kxRN IR0O)Nx1 + #x 1IRNxol 1R1 - (31
terms in its Taylor series expansion aroundO. In other
words, we could have approximated each variable during one
pulse width by a simple linear function of timg.e., C;
+ C,t). The solution of the zero-order equations would thenThen, we put Egs(15), (16), and (31) into Eqg. (17), and
consist of finding the unknown constargi®., C,; andC,). solve forn, as a function olNg.; andNy; . The result is
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e,LLnO

+0x,eSx,cl 6 T dx,IrSx, IRl IR0~ (
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iK
e

(kx,cleT kxRl IRO)

_ €q
M= YreNFe= Na+Nyo)
- S +0reSrd 6+ Yrdo— ﬁKFe| G
€€ e

Nx1

iK _
ax,IRSX,IR™ o MXIR Nxol ir1

(32

Yed Npe= Na+ Nyo)

The next step is to substitutg from Eq.(32) into Egs.(15)

Ne.,+ —
Fel Yed Npe= Na+ Nyo)

aboutt=0. Since the right-hand sides of Eq83) and(34)

and(16), and combine these two equations to obtain a set ofontain terms likeC,;+C,t, we approximate botiNg,,

two ordinary differential equations for two unknowi ;
andNgg;+ Ny, as

d(Nges+Nyy) eu(ngotnet) iK _ _
dt =- ceq +?KFeIG (NgestNxy)
- ?(KX,GIG"— kxRl irRo— Krd 6) Ny
T e kxRl IR1(QrexSrexl GNXNAL,  (33)
dNy,

TR OrexSrex! 6l Nx — (OrexSrex! gNxNa)t]1(Ngeg+Ny;)

—(9x,eSx,cl ¢ 1 dx,IrSx, IRl IR0) Nx1
+ rexSrex! 6l Nx+ Na— 2(drexSrex| sNxNa) tINy

—0x.1IrSx, IRl IR1(drexSrex| cNxNa)t, (34

where we replaced the zero-order variabl¥g{, Ngo, and
no) by their equivalents from Eq$27)—(29). Note that we
deliberately chos®g.;+ Ny, as one variable since it is re-
lated to the space-charge field as

Ey=— %(N;@_l—k Nigy)- (35

The initial conditions for Eqs(33) and (34) are
Npei(t=0)=A, (36)
Ny, (t=0)=0, (37)

where we assumed that all electrons in the shallow traps are
transferred to the deep traps in the time interval between

+Ny; andNy;, by the first three terms in their Taylor-series
expansions. Using the initial conditions given by E¢36)
and (37) and assuming that the pulse starts at tir, we
can write

Ni.,+ Ny, =A+Bt+Ct?, (39
Fel X1

Ny, =Dt+Et? (39

Putting Egs.(38)—(39) into Egs.(33)—(34), we obtain

iK

eu(Nggt Nost)
u-i-FKFJG (A+Bt+Ct?)

€€p

B+2Ct=—

iK
- F(KX,GJG*‘ #x.irliro— krd ) (Dt + Et?)

iK
— — kxRl IR1(ArexSrex! cNxNA)1,

. (40)

D +2Et= QrexSrex! 6L Nx = (drexSrex! cNxNa)t]
X (A+Bt+Ct?) — (0x,6Sx,6l 6 T Ux,IRSx, IR IR0)
X (Dt+Et?) + QrexSrex! ol Nx+ N
—2(qrexSrex| cNxNa)t](Dt+Et?)

= Ox, IrRSxIR! IR1(ArexSrex| cNxNa)t. (41)

Equating the coefficients of the first two powerstdtic and
linear term$ on the two sides of Eq$40) and(41), we can

find a set of four equations for four unknowri, C, D, and
E. Solving such a set of equations results in

adjacent pulses resulting in fully empty shallow traps at the

beginning of every pulset&0). The value ofNg,, at the
beginning of each pulsé?d) depends on timéor the total

number of previous pulsgas space-charge is built up in Fe

e,l.LnOO |K
= — + —
B ( €o e KFJG)A, (42)
1[[euny iK ) eungy;
= — + — —
( €€Q e KFeIG €€p A

traps with time. iK

Assumption 9: We assume that the variations in first-order ~ — E[quXSF@d GNX(;) (kxclet kxrlirRo™ Krd 6) |A
variables(i.e., Ng,; and Ny;) within one pulse width are )
small. Therefore, we can approximate every first-order vari- ﬁ | NuN.l 43
able with the first few terms in its Taylor-series expansion 2e "% RAFexSred X NATIRL “3)
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D = (drexSrex! cNx)A, (44)

E=— 30rexSrex!| cNx(Ax,6Sx.cl 6T Ax,1IrSx. IRl IRO)A

€N
€E€Q

— 3 0rexSrex| GNx| OrexSrex] 6(Nx+2Np) +

iK
+?KFe|G

A— %qX,IRSX,IRqFPXSFeXI cNxNal g1 -
(45

E. Saturation space-charge field

The space-charge field; within one pulse can be repre-
sented as

—ie

E,= (A+Bt+Ct?), (46)

Keeg

PHYSICAL REVIEW A 63 023813

Equation(49) clearly shows the dependence of the saturation
space-charge field(and therefore, saturation hologram
strength on the sensitizing and recording intensities. Later,
we will use Eq.(49) to explain the experimental results on
the intensity dependence of saturation hologram strength.

F. Time dependence of space-charge field

In the previous calculations, we solved for the space-
charge field within one pulse. Due to the short lifetime of
electrons in the shallow traps, compared to the time between
adjacent pulses, we can assume that all electrons in shallow
traps at the end of each pulse are transferred locally to the
deep traps before the beginning of the next pulse. The local
transfer of electrons between traps is based on the fact that
almost all electrons are transferred directly from the shallow
traps to the deep traps without passing through the conduc-
tion band.

To find the dynamics of space-charge formation, we need

with A, B, Cdefined above. The saturation space-charge field® calculate the space-charge field in the time scale much

can be easily obtained from E@46) by noting that the

longer than one pulse. To avoid confusion, we represent the

space-charge field at the beginning and at the end of eadipace-charge field in this time scaleBy. The change in the
pulse would be the same at saturation. This can be writtefPace-charge field within one pulse is

mathematically as

EA(t=tp) =Ex(1=0)= A 47

or
B+Ct,=0, (49)

wheret,, is the pulse width. Putting and C from Egs.(42)

and(43) into Eq.(48), we can solve for the saturation space-

charge field —ieA/(Keep)] as

Bilir1

E o= , 49
l|SatUrat|0n B2+ﬁ3| |R0+ B4I G ( )

where

tp
B1=— zeequexsFeXNAKX,le (50
e,LLNA |K
= + —
2= ceoyed Nea N AreSret 5 KFes (5D
t euNy iK

p
ﬁ3ZEQFeXSF@(NX m) Ox,IrRSx, Rt o fXIR
(52

e,LLNA
_P
Ba= 2 OrexSrexNx eeovrd Nee— Np)
Nee iK
X1 0x,6Sx,6— queSFe + ?(KX,G_ KEe)
e
t euNy iK )2
p

- = +—k . 53
2 ( GEOYFe(NFe_ NA) UFeSre e Fe ( )

ie 2
—— (Btpy+Cty),

AB=Ea(t=tp) ~Ey(t=0)=—

(54)

with t, being the pulse width. Therefore, we can write an
approximate equation fdg; as
dE; AE,

ie
——EO(B+Ctp). (55)

dt  t,  Ke
Note thatB and C in Eg. (55) are now time dependent, as

they are different within different pulses. ReplaciB@andC
from Eqgs.(42) and(43) into Eq.(55), we obtain

dE_l e,LLnOO |K
W—l—(e—%wwe

iK

t
+ + — -
e KFeIG)

€euNoy
€E€Q

©

€uNoo
€E€Q

e A
Keeg

N|

o)

- EpQFeXSFQ(I GNX(?> (Kx,G| cT KX,IRI IR0~ Krd 6)

ie
X

t
A) - (_p Kx,IROFexSrex| GNXNA) lR1-

Keeg 2€€q

(56)

Note that—ie A/(Keegp) is the space-charge field at the be-
ginning of each pulse, and therefore we can write

ie
——At).
660

Ex(h)=—

(57)

Combining Eqs(56) and (57), we obtain
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dE, E, E :
1 _ _l + l| Saturatlon, (58)
dt T T

where the saturation space-charge f€ldsawraionis the same as that obtained by a simple observation previfEgly49)],
and recording spee(nverse of recording time constany) is given by

1 e/.LnOO+ |K tp e/.LnOO |K 2
| €€ e FEG| T2 €€y e wrdc
t,| eun iK
p 01
+E +QF@<5F@<|GNX(_)(KX,G|G+Kx,lRllRo_KFeJG)
EEO e

ex  OreSreNa iK ) tp(eﬂ AreSreNa iK )2 > Ip (e,u Na )
B TRREA L rello— 2 e A L ) 124 2 reSradNy| —— ———
e€o YrdNrpe=Np) € " 7°)°¢ 21 e€q yrdNge=Na) @ 778 67 2 AFexSrectix €€ Yr Nre=Na)

% s _L 124+ -P se N ﬁ (kx o— Kpa| A+ = se N e_’uL
ax,cSx,G NFe_NAquSFe G 2QF@< FexNx| 7o X,6~ Krel g ZqF@( FXX| e yed Nre— N,b)
iK
X| Ax,IrRSx,IRT ?KX,IR)IGIIRO- (59

The solution of Eq.(58) for E; with initial condition late the order of magnitude of the different terms in Hg$)
E_l(tzo)zo is a monoexponential function like and (59). We then neglect the terms that are at least one
order of magnitude less than the others to obtain simplified
E—p | 1— _L formulas. In these calculations, we assuige- |z~ 10
1= Elsawration -~ €XP — ] |- —10°Wicn? for the sensitizing and recording intensities,
t,=5 nsec for the pulse width, anl=2 um for the grating
This formula does not show the variation of the space-charggeriod at recording wavelength of=1064um. We also
field within the individual pulses. This is acceptable, since inagssume that the oxidation/reduction state of the crystal is
the experiments we measure the diffraction efficiency of theych thatN ,/Nee~0.1, i.e., about 10% of the Fe traps are

holograms after pulses and not within them. Note that theytially occupied by electrons. These are typical values used
time variablet in Eq. (60) is the time where the pulse is on the experiments.

(exposure timg The space-charge field remains constant be-
tween adjacent pulses. Therefore, we delete the times when
the pulse is off from the time variablke Note that Eq.(58) 1. Simplified formula for saturation space-charge field
can also be used with a different initial condition to obtain
the space-charge field during erasure. Therefore, the record- Using material parameter values from Table | and experi-
ing and erasure time constants are equal. In Sec. VI we wilmental values given above, we can simplify E80) by us-
use Eqgs.(49 and (59 to explain the experimental depen- ing the following approximations:
dence of the saturation space-charge field and recording time
constant on the intensities of the sensitizing and recording
beams. K
We can improve the accuracy of the analytical formula g|
derived above by using more terms in the Taylor-series ex-
pansion of different variables. The next approximation step
is to consider the first three Taylor-series terms for the zero- K
. ! : ; euNp
order variables and the first four ones for the first-order vari- - | kxRl < (62

(60)

eILLNA
€€oYred NFe™

Krd < N, JreSres (61)

S, 1

ables. €€oYred Nre—Na) X IRSx. IR

G. Simplified formulas
. . . K euNa
Although we derived analytic formulas for the saturation —|kx g Krd < NC—N

space-charge field and recording time constirs.(49) and € €€oYrd Nre=Na)

(59), respectively, the formulas are so complex that we can- Nee

not easily use them to explain the different experimental ob- X |0x.6Sx.6— Wq&s%,

servations based on the simple physical mechanisms. In this Fe A

section, we use the parameter values from Table | to calcu- (63
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e,LLNA
€€0Yrd Nee—Np)

(quSFe)z

Nee
<0rexSrexNx| dx,6Sx.6 — Nro— N, NAquSF ;
e

(64)
where Eq.(61) is used for simplification of3, in Eq. (51);

Eq. (62) is used for simplification oB3 in Eq.(51); and Eqgs.
(63) and(64) are used for simplification g8,. For the crys-

PHYSICAL REVIEW A 63 023813

Kx,lRNxo,avJ IR1

=5 | saturation W - (69
,ave

In the next section, we will use this formula to explain dif-
ferent experimental observations based on very basic physi-
cal mechanisms.

2. Simplified formula for recording time constant

Using the approximations given by Eq&1)—(64), we
can simplify Eq.(59) for the recording speed as

tal used in our experiments, the right-hand-sides of Egs.

(61)—(63) are larger than their corresponding left-hand sides 1 1

by at least a factor of 200. This factor is 40 for H§4).

Using these approximations, the simplified formula for the

saturation space-charge fiefd | sauraionP€COMeES

p
- EqF@(SF@(NANXKX,IRI IR1

E1| saturation eu NA ) (65)
— 7
Ve Nee=Np)

where
tp
1= EqF(-‘-)(SF(-‘)(NX Ox,IrRSx, IR IR0

Nee

+| Ox,6Sx,6— quesFe I |+ OreSre-
e

(66)

Equation(65) can be rewritten in a form that is very useful change in  the

S, S
2eeq 7rd Nee— Np) OrexSrexNx| Ox,6Sx,G

NFe )
- lgty) 2+
NFe_ NAquSFe ( G'p

Tr_tp

e,LL NA

€€ (Npe— Ny | IFeFe

1

+ EqF@(SFeXNXqX,IRSX,IR(I irotp) . (70)

(Ith)

Comparing Eqgs.(70) and (67), we obtain the following
simple formula that can be used to explain the experimental
observations based on simple physical mechanisms

1 ewung

—= (70)
Ty €€p

H. Comparison with numerical solution

Figures 11a) and 11b) show the variations of saturation
index of refraction An=

for understanding the main physical mechanisms responsible (N*/2)r 15E 1| sawration(N: index of refraction at recording fre-
for recording by multiplying the numerator and the denomi-quency with recording and sensitizing intensitiegg, and
nator of E4|sawraion Y Ig, and comparing them with the 1g), respectively. In these figures, we have shown both ana-

values ofny and Ny, averaged over one pulse width €@
<t,) given below byng e @ndNyg ayer

t
_ p
No,ave= Noot oty

Na  tp N
= ——————— —OrxS
Yrd Npe— Njy) 2 GFexSracix

X

NFe 2
Ox,6Sx,6— queSFe 15

Na
J’_ —
YrelNpe—Na)

X

g,

(67)

t
p
OreSre™ 2 OrexSrexNx0x, 1rSx, IRl IR0

t
- p
NXO,ave:E OrexSrexNxNal g - (68)

The resulting simplified formula for the saturation space-

charge field is

lytical and numerical solutions as well as the experimental
results. As Fig. 11 shows, the agreement between the ana-
lytical formula for E;|saturation [EG- (65)] and the numerical
solution is very good with all levels of assumptions and ap-
proximations involved.

Figures 12a) and 12b) show the variations of recording
speed (14,) with recording and sensitizing intensities, re-
spectively. As in Fig. 11, we have shown analytical and nu-
merical solutions as well as the experimental results. Al-
though the analytic solution from Eq(70) shows the
appropriate qualitative variation of recording speed with in-
tensities, its deviation from the numerical solution is more
than 10% for larger intensities, as shown in Fig. 12. One of
the major sources of error in the analytic solution is the ap-
proximation ng=ngg+Ngst given by Eq.(29). To obtain a
more accurate formula for the recording speed, we use the
simplified formula given by Eq(71), but we calculateg 4
by time averaging, without making a linear approximation.
To do this, we first replace the more accurate formula for
Nyo from Eq. (24) into the formula fom, given by Eq.(29)
and rearrange the terms to obtain

_51_§2 exp( —t/7y)
no_§3_§4 exp(—t/7y)’

(72)
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FIG. 11. Variation of the saturation value of the amplitude of
the refractive index gratingAn) with (a) average infrared light

intensity lgo Wwhile green light intensity is fixed Ig

=105 GW/nf), and(b) green light intensity ¢ while infrared light
intensity is fixed (jro=225 GW/nt). The modulation depth of the

infrared intensity was 1(zo=1r1) in both cases.
where, 7, is given by Eq.(25), and{,— ¢, are defined by
{1=AreSrd 6Na(dx,6Sx,6l 6 1 Ax, IRSX, IRI 1RO
* OrexSrex! GNa)
+ rexSrex| cNXNA(Ax 6Sx,6l 6+ dx, IrSx, IRl IR0) »

(73

{2= rexSrex! cNxNa(0x eSx,cl 6+ dx,1rSx, IRl IR0
—0JesSrd 6)s (74)
{3= Yed (Nge= Na) (dx,6Sx,cl 6+ Ax,1rSx, IRl IR0
+ QrexSrex! 6L Nx+ Nal) 1+ YedrexSrex| sNxNa
(79
{4= YrdrexSrexl GNxNa - (76)

In the next step, we calculate, . by time-averagingng
from Eq.(72) over one pulse width (§t=t),
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FIG. 12. Variation of recording speedﬂl) with (a) average

infrared light intensityl g while green light intensity is fixedl g

=105 GW/n?), and(b) green light intensity 5 while infrared light
intensity is fixed (jro=225 GWI/nf). The modulation depth of the
infrared intensity was U(zo=1r,) in both cases.

1 (% 1 (= exp—t/Ty)
— J nodt_*

Moave™¢ CtpJo L3 Laexp(—t/Ty)
A
{3 W\la L8] | fs—daexp—tplT)|

(77

Putting ng ac iNto Eq. (71), we obtain a more accurate ana-
lytic formula for the recording time constant. The variation
of recording speed with sensitizing and recording intensities
using this more accurate formula is also depicted in Fig. 12
showing much better agreement with the numerical solution
than the approximate formula given by E@0). Therefore,

we have analytic formulas for both the saturation space-
charge field and recording time constant that agree very well
with both the numerical solution and experimental results.

It is important to note that the analytic formulas become
less accurate as we increase either the intensities or the pulse
width. This is due to the fact that increasing the energy of
each pulse(by increasing either its intensity or its width
results in stronger variation of the variables within one pulse
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and makes the approximation of the variables by a few (a) (b)
Taylor-series terms less accurate. However, the analytic for:
mulas derived in this section are good enough for most prac-
tical applications with current high-energy pulsed lasers. The
more significant usage of these formulas is the understandini g
of main physical mechanisms responsible for holographic ™\
recording and using them for the explanation of the experi-
mental observations. This is done in the next section.

2+3+
€

2+/3+
F Fe
VI. EXPLANATION OF THE EXPERIMENTAL

OBSERVATIONS

In this section, we use the two simplified formulas we
derived in the last section to draw a simple physical picture
for pulse recording mechanisms and use it to explain the FIG. 13. Mechanisms for excitation of electrons from deep traps
experimental observations discussed in Sec. IV. In this sed® the conduction band in a LiNh{Fe crystal for(a) normal re-
tion, we assume thdtgo=1ry, in agreement with experi- cording with low intensities, an¢b) two-step recording with high
mental conditions. Therefore, we ug, when the variation intensities. There are three different paths for electron generation in

with recording intensity is involved. We repeat the simplifiedt\’vo'stelo recordipg indicated by 1, 2, g_nd 3. In _p@tr)t elec_tro_n
formulas(69) and(71) here: transfer mechanisms caused by sensitiziggeen light are indi-

cated byG, and those caused by recordifigfrared light are indi-

Kx,IRNx0 avd IR1 cated by IR.
Exlsauraio™ euNoave saturation space-charge field and recording speed in the two
cases are different. This is due to the fact that the trap re-
1 eungae sponsible for electron concentration in the conduction band,

T een - and the one responsible for the bulk photovoltaic current, are
r 0 . . . . .
the same in normal recording, while they are different in
The formula for recording speed is similar to that for nor- two-step recording. This can be easily understood from Fig.
mal holographic recording with cw light in singly doped 13 that shows the energy band diagrams of the two cases. In
LiNbO, crystals. The only difference is that in the latter we NOrmal recording, the electron concentration in the conduc-
have the dc electron concentration in the conduction ban{On Pand is due to excitation from Fe traps by the recording

no) in place ofng .., the time-averaged dc electron con- ight. T_he same traps are also respons_ible for the bulk pho-
f:e%)tratign in the ggﬁ?ﬂuction band ove? one pulse width. Th ovoltaic effect caused by the recording light. Therefore,

formula for the saturation space-charge field is also similar t?n?;rlles?thl a}:sd 20 I’QSLIJ:]?. t(g e?) Si?grear;%rl]m;; ;ge_%?] ;zcg rfcliler;g in
what we have in normal cw recording. This similarity is Y. ' g

. 7~ normal recording is independent of recording intensity. On
better understood by recalling that the total current derjsity the other hand, recording speed 4}/in normal recording

is zero at saturatiofsteady state Neglecting diffusion, we i, reases linearly with recording intensity singg has this

can write the above statement mathematically as intensity dependence.
il o= o €0k - _0 (78) In two-step recording, the electron concentration in the
J1lsaturation™ J pha ™ €A NoE 1| saturatio™ s conduction band is caused by three different paths: directly

from the deep traps by sensitizing lidipath 1 in Fig. 180)],

in two steps via the shallow traps by sensitizing light only

[path 2 in Fig. 180)], and from the deep traps to the shallow

oun. (790  traps by sensitizing light; then from shallow traps to the con-
Ko duction band by recording lighpath 3 in Fig. 18)]. The

H 2
If we assume that the dominant term in the bulk photovoltaicStrengths of these three mechanisms depentorig, and

current is that from the shallow traps due to the recordindcliro. respectively. The time averaging of, over one
light, we can rewrite Eq(79) as pulse does not change this intensity dependence. This ex-

plains the experimentally observed dependence of the re-
#x 1rRNxol IRo g:ordin'g' speed orig anq liro shpwn in Fi.g. 1_2. At lower
E1lsatrator = ——— (80) intensities, electron excitation via path 1 in Figurét3e-
euno comes dominant and the recording speed varies linearly with
I while it is weakly dependent ohgy. As we increase
intensities, the two-step excitation mechanidipaths 2 and

or

j phl
El|saturation: -

where we assumebtiz;=1ro. Equation(80) becomes the

same simplified formula we derived {1 saurarionlf We re- 3% Fig “131)] become stronger. Therefore, we might ob-
place Ny, andn, by their time-averaged values over one gene 5 quadratic dependeneglis+a,l2) of the recording
pulse width,Nyg ave@Ndno ave, respectively. speed withl g at very high intensities. We also observe a
Although the physical mechanisms in two-step holo-small linear increase of recording speed with increasipg
graphic recording with high intensity pulses are similar towhile | is fixed. During erasure with sensitizing light only,
those of normal recording, the intensity dependence of thgve also observe a quadratic dependence of the erasure speed
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(inverse of erasure time constantith | ; as we have similar as suggested by E¢49). Note that Eq(49) was derived by

dependence of erasure time constanngg,. assuming thalNy, ..l g, as shown in Eq(24). Therefore,
As Fig. 11 shows, the saturation hologram strength inthe exact dependence Efllsat_uraﬁonon | is more compli-
creases linearly withzo and decreases very slowly witg.  cated than was thought previously.

The intensity dependence of the saturation hologram strength Alth(_)ugr;] "I"e focused abﬁve g” thed(_jepender&ce of the
in two-step recordingspace-charge field abn) has been G2/ 8Ty LT SN BN P08 SRR e the.
puzzling, as it is very different from normal recording. As a 9 g ! P

: . . ependence of these two variables on other parameters. For
re_sult, there has been no plausible physm_al explanation xample, we expect the recording speed to depend on
this dependence yet. However, we can easily understand aINj,:ez+/N,:e2+ [or Na/(Nee—N,) ], since the main source for

explain these puzzling observations using our simple modekjectron generation in the conduction band is electron con-
One important term in the saturation space-charge field is theentration in Fe trapsNre+), and the main source for elec-
time-averaged electron concentration in the shallow trapgon trapping from the conduction band is the concentration
Nyo.ave that depends on both populating and depopulatingof empty Fe trapsNgg+). Therefore,

mechanisms. The main populating mechanism is direct elec- 1 N

tron transfer from the deep traps by sensitizing light, as the ot et ﬁ_

trapping of conduction-band electrons by shallow traps can Ty ’ NEes+

be neglected. The strength of this populating mechanism dql—v -
: e also expect thally, ,,Nee2+ as the shallow traps are
pends orlg . On the other hand, depopulation of the shallow opulated by direct electron transfer from the deep traps.

traps within one pulse is due to excitation of the electrons t ; :
. o ) . utting the dependence bif, andn into the formula
the conduction band by both sensitizing and recording light 9 P -~ XOave O.ave
for E4|sawration W€ Obtain

Note that direct electron transfer from shallow traps to deep

traps is another depopulating mechanism. However, we ne- N30 ave

glect this mechanism during one pulse wi¢dhfew nanosec- An|saturatiof E1l saturatiof® n—“ Neet, (82)
onds due to a much longer lifetime of electrons in the shal- Oave

low traps (a few milliseconds as explained before. To which is in agreement with the experimental results depicted
summarize, we expey, .. to increase witl g in a com-  in Fig. 9.

plicated way and decrease with increasing,. With the To summarize, the simple model based on E8) and

assumptions and approximations described befogg,in- (71 gives us a complete understanding of the physical
creases linearly withg , while it is independent deR;) (due mechanisms involved in two-step holographic recording with

. . : high intensity pulses and helps us understand and explain the
to th_e minor role Oﬂ.'RO in depopulation of the shallow traps experimental observations that were not all explained before.
within one pulse width

We are now ready to explain the intensity dependence of VIl. CONCLUSIONS
E1|sawraion@S We understand the intensity dependence of all _ _
terms involved in Eq(69). We expecE|saurationt0 increase We developed a full numerical solution as well as an ap-

linearly with 1,5 at lower intensities as bothly, .. and 'pro>§ima.te analytic solution for two-step holographic reco_rd—
Noaveare almost independent b, at lower intensities. This ing in LINbO;:Fe crystals. We found the unknown material

dependence ohg, becomes sublinear and finally turns into parameters by fitting thr-_j numerical solution to the experi-
independence fromg, when we increase, without limit mental results. The two important parameters that were un-

hile 1 is fixed. The latter behavior is due to the li known so far and found in this work are the bulk photovol-
while T 1S Tixed. The fatter behavior 1s due 1o the IN€ar ;. coefficient and absorption cross section for the excitation
dependence ofig ,e ON | go at higher values ofry. The

: 0 X of the electrons from small polarons in LiNg@ith infrared
saturation space-charge field is almost independehg @t |ight (see Table )l The simplified analytic solution we de-

lower intensities due to the approximately linear dependencgebped agrees very well with the numerical solution for
of both Ny 4,e@NdNg 460N | ¢ at lower intensities. The exact most practical applications. Furthermore, the analytic solu-
dependence ohg is more complicated and depends also ontion gives us a very good understanding of the physical pro-
the oxidation/reduction state of the crystal due to a moreesses involved. Such a simple model also helps us explain
complicated dependence bl ,,.andng e 0N | that be-  the experimental observations that were not understood be-
comes more evident at higher intensities. Equati4® de-  fore.

scribes a more complete dependenc& gt raionOn SENSi- _Although our metho_d for obtaining an approximate ana-
tizing and recording intensities. It can be seen from thigytic solution was applied to the problem of two-step holo-
formula that when the oxidation/reduction state of the crystafraphic recording with pulses, the developed strategy can be
is such that the coefficient ofs in the denominator of USed in solving a wide variety of problems involving pulses
Ey|sawratiok Ba) in Eq. (49) is positive, the saturation space- of actions where each pulse is followed by a much longer

charge field decreases with increasing. When the relaxation time.
oxidation/reduction state is such that this coefficient is nega-

tive, the saturation space-charge field increases with increas-

ing | ¢ at normal intensities. If we increasg without limit, This work was supported by the U.S. Air Force Office of
the saturation space-charge field will finally decrease wittScientific ResearchtAFOSR), and by the AF/Rome Labora-
increasingl g regardless of the oxidation state of the crystal,tory.
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