
Principles & Practice of Light Microscopy

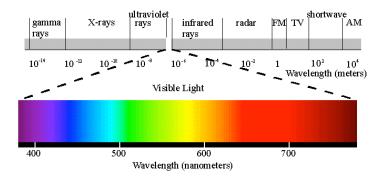
Lecture course (draft)

- Apr 2: Light, refraction, diffraction, ray optics, lenses, images. The light microscope, numerical aperture, Köhler illumination.
- Apr 9: No lecture
- Apr 16: Resolution and contrast, aberrations, spatial frequencies and the Fourier transform, the point spread function, the optical transfer function.
- Apr 23: Phase contrast, DIC, darkfield, polarization microscopy.
- Apr 30: Fluorescence, probes, photobleaching, filters and dichroics, fluorescent proteins.
- May 7 : TIRF, FRET, FRAP, FLIP, FLIM, photo-activation, image fluorescence correlation spectroscopy, optical tweezers, single molecule microscopy, live cell techniques.
- May 14: Confocal, spinning disk, multi-photon, second/third harmonic generation, coherent anti-Stokes Raman microscopy (CARS)
- May 21: Detectors, light sources, noise. Image analysis and filtering: scaling, gamma, filtering, filtering artifacts, image arithmetic, ratioing, linear unmixing, segmentation.
- May 28: Deconvolution, advanced techniques: 4Pi, structured illumination, SPIM, PALM/FPALM/STORM...

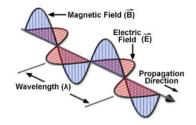
Principles and Practice of Light Microscopy

- Lectures Mondays 10–12 in BH212 Mats Gustafsson: <u>mats@msg.ucsf.edu</u>, 514–4385
- Labs Wed <u>or</u> Th 4-6 in BH309, starting April 18 (pick one of the two lab groups)

Orion Weiner: <u>orion.weiner@ucsf.edu</u>, 514-4508 John Sedat: <u>sedat@msg.ucsf.edu</u>, 476-4156 Kurt Thorn: <u>kurt.thorn@ucsf.edu</u>, 514-9709

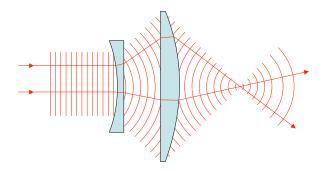

- Optional reading materials:
 - Douglas Murphy, Fundamentals of Light Microscopy and Digital Imaging (\$85 at Amazon – sorry!)
 - micro.magnet.fsu.edu
 - www.microscopyu.com

The Light Microscope

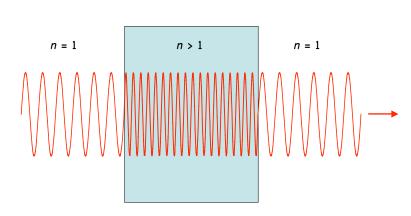

- Four centuries of history
- Vibrant current development
- One of the most widely used research tools

Electromagnetic Waves

Light as an Electromagnetic Wave


Most matter interacts mostly with the electric field \Rightarrow We will ignore the magnetic field

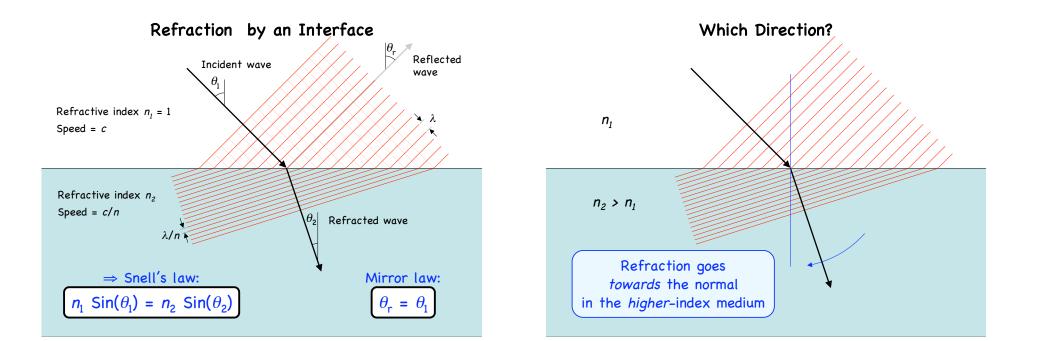
Polarization = direction of electric field

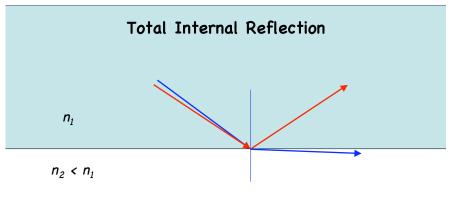

Waves vs. Photons vs. Rays

- Quantum wave-particle duality
- EM field \approx collective wave function for the photons
- Light intensity \propto photon flux \propto | field |²
- Rays: photon trajectories
- Rays: propagation direction of waves

Rays are perpendicular to wavefronts

Light travels more slowly in matter The speed ratio is the *Index of Refraction, n* v = c/n

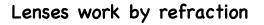


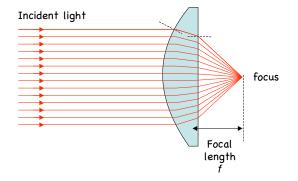

Refractive Index Examples

1

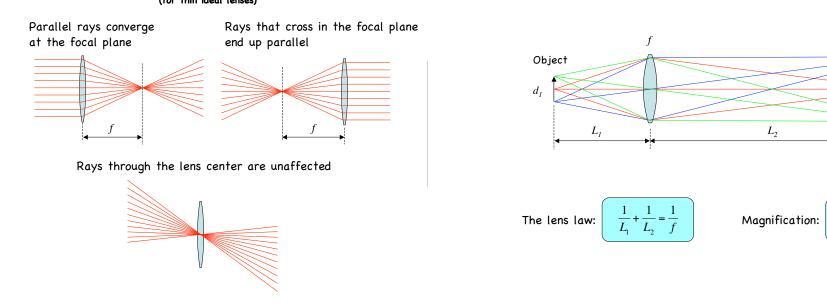
- Vacuum
- Air 1.0003
- Water 1.333
- Cytoplasm 1.35-1.38 ?
- Glycerol 1.475 (anhydrous)
- Immersion oil 1.515
- Fused silica 1.46
- Optical glasses 1.5–1.9
- Diamond 2.417

Depends on wavelength and temperature



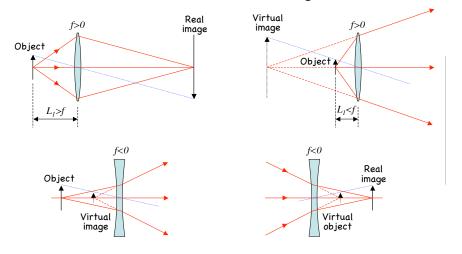


Snell's Law: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

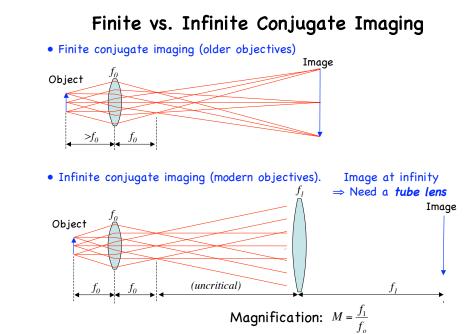

If $n_1 Sin(\theta_1) > n_{2}$, then $Sin(\theta_2)$ would have to exceed 1. Impossible \Rightarrow No light can be transmitted \Rightarrow All is reflected: *Total internal reflection*

Happens only when going to a lower-index medium

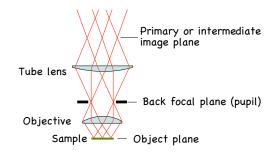
Ray Tracing Rules of Thumb



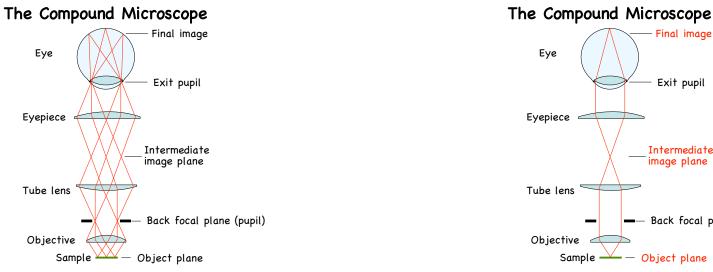
Imaging

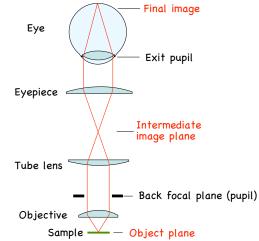

Image

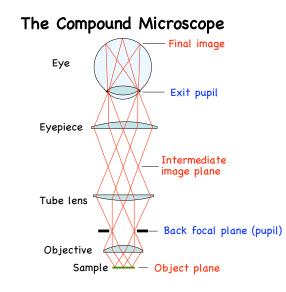
 $M = \frac{d_2}{d_1} = \frac{L_2}{L_1}$


 d_2

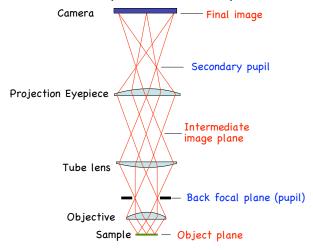
The same lens law applies: Negative lenses have negative f Virtual objects or images have negative values of $L_{\rm l}$ or $L_{\rm 2}$




The Compound Microscope


Back focal plane Back focal plane Object f_0 f_0

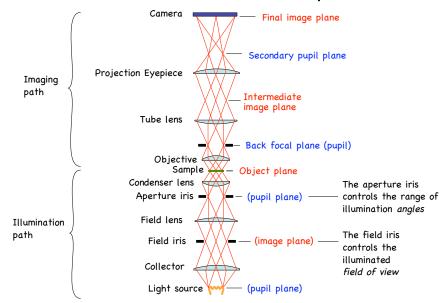
Real and virtual images

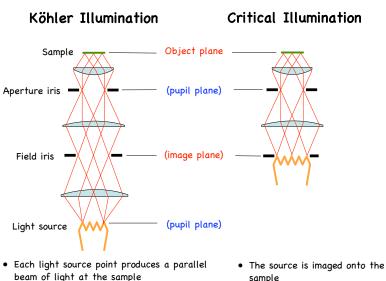


The Compound Microscope

Eyepieces (Oculars)

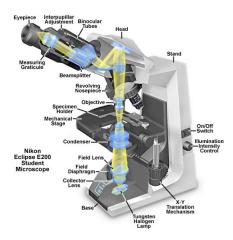
Housing


Rubber Eyecup Evelens Single Lens Diopter Adjustme - Lens Triplet Aperture Eyetube Fastening-Field Lens Screw Double Evetub Evetube Mounti Insert Flang


Aberration-Free 10x Eyepiece With Diopter Adjustment

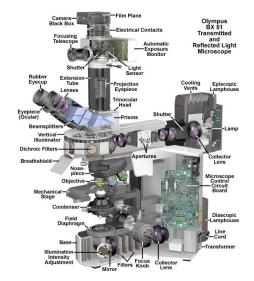
Features

- Magnification (10x typical)
- "High eye point" (exit pupil high enough to allow eyeglasses)
- Diopter adjust (at least one must have this)
- Reticle or fitting for one
- Eye cups


Trans-illumination Microscope

- Uniform light intensity at the sample even if the light source is "ugly" (e.g. a filament)
- sample
- Usable only if the light source is perfectly uniform

A Simple Microscope

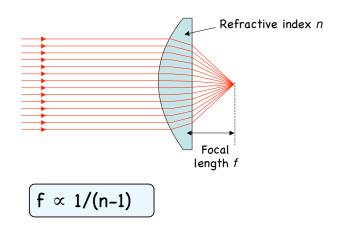


How view the pupil planes?

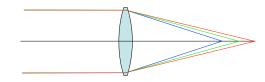
Two ways:

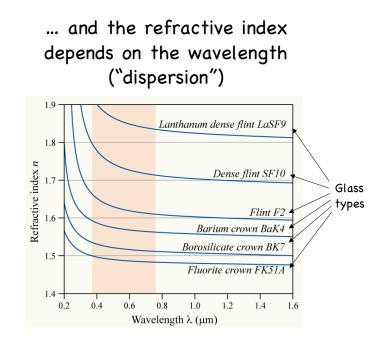
- "Eyepiece telescope"
- "Bertrand lens"

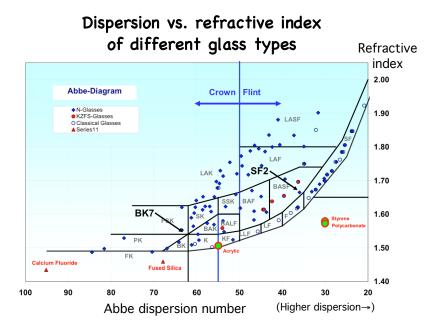
A Research Microscope



By far the most important part: the Objective Lens

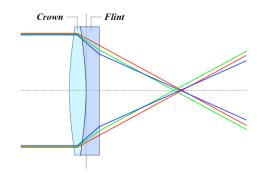

Each major manufacturer sells 20–30 different *categories* of objectives. What are the important distinctions?

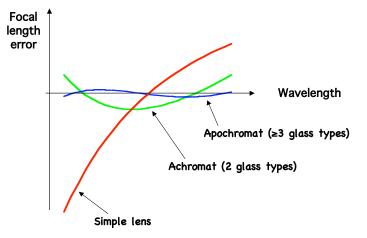

The focal length of a lens depends on the refractive index...



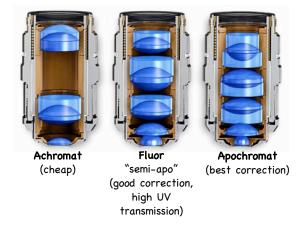
 \Rightarrow Chromatic aberration

- Different colors get focused to different planes
- Not good...

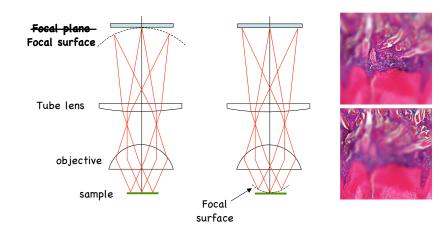




Achromatic Lenses


• Use a weak negative flint glass element to compensate the dispersion of a positive crown glass element

Achromats and Apochromats



Correction classes of objectives


Correction for other (i.e. monochromatic) aberrations also improves in the same order

Curvature of Field

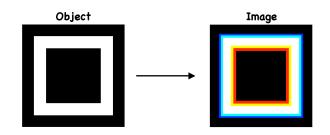
Plan objectives

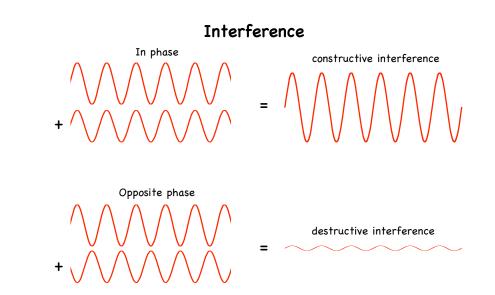
- Corrected for field curvature
- More complex design
- Needed for most photomicrography

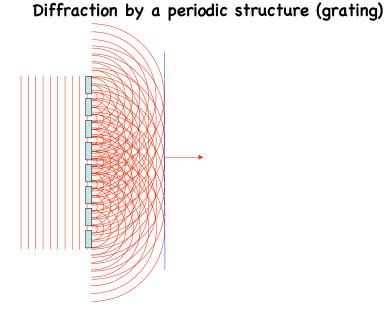
• **Plan-Apochromats** have the highest performance (and highest complexity and price)

Putting one brand of objectives onto another brand of microscope?

Usually a bad idea:

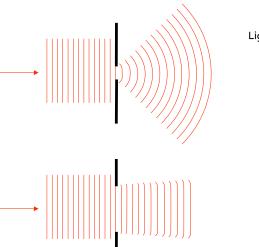

- May not even fit
- May get different magnification than is printed on the objective
- Incompatible ways of correcting lateral chromatic aberration (LCA)



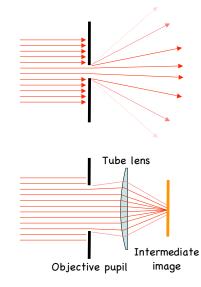

Tube lens	focal	length
Nikon	200	
Leica	200	
Olympus	180	
Zeiss	165	

- LCA correction: In objective In tube lens Nikon Leica Olympus Zeiss
- \Rightarrow mixing brands can produce severe LCA

- Lateral chromatic aberration (= LCA, lateral color, chromatic difference of magnification)
- = Different magnification for different colors



Diffraction by a periodic structure (grating)



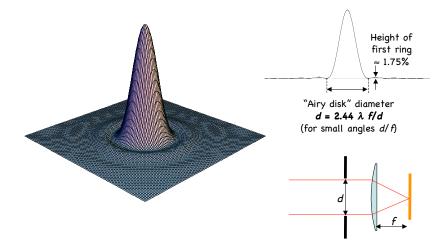
Diffraction by an aperture drawn as waves

Light spreads to new angles

Larger aperture ⇔ weaker diffraction

Diffraction by an aperture drawn as rays

The pure, "far-field" diffraction pattern is formed at ∞ distance...



...or can be formed at a finite distance by a lens...

...as happens in a microscope

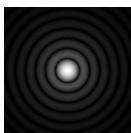
The Airy Pattern

= the far-field diffraction pattern from a round aperture

Aperture and Resolution

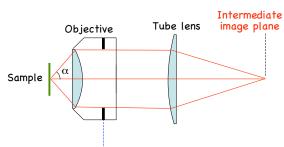
Tube lens

Objective

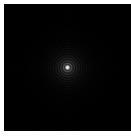

Back focal plane aperture

Sample

Intermediate


image plane

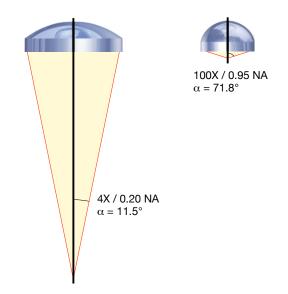
Diffraction spot on image plane (resolution)



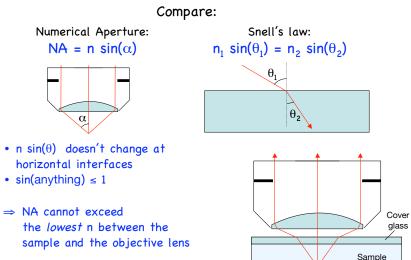
Aperture and Resolution Diffraction spot on image plane (resolution) Sample Back focal plane aperture

Aperture and Resolution

Diffraction spot on image plane (resolution)

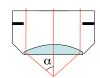

Back focal plane aperture

• Image resolution improves with aperture size- Numerical Aperture (NA)


 $\mathsf{NA} = \mathsf{n} \operatorname{sin}(\alpha)$

where: α = light gathering angle n = refractive index of sample

Numerical Aperture

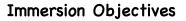

Numerical Aperture

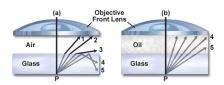
Numerical Aperture

Numerical Aperture: NA = n sin(α)

• $n \sin(\theta)$ doesn't change at

horizontal interfaces

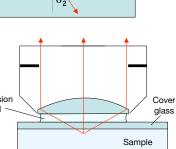

• $sin(anything) \leq 1$


 \Rightarrow NA cannot exceed

 $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$ $\boldsymbol{\theta}_1$ θ2 Immersion fluid

Snell's law:

- $n \sin(\theta)$ doesn't change at horizontal interfaces
- \Rightarrow NA cannot exceed the lowest n between the


NA can approach the index of the immersion fluid

Oil immersion: n ≈ 1.515 max NA \approx **1.4** (1.45–1.49 for TIRF) Glycerol immersion: $n \approx 1.45$ (85%) max NA \approx **1.35** (Leica) Water immersion: n ≈ 1.33 max NA \approx 1.2

sample and the objective lens

⇒ NA >1 requires *fluid immersion*

the lowest n between the

Basic properties

- Magnification
- Numerical Aperture (NA)
- Infinite or finite conjugate
- Cover slip thickness if any
- Immersion fluid if any

Correction class

- Achromat
- Fluor
- Apochromat

Objective Types

Field flatness

Plan or not

Phase rings for phase contrast

- Positive or negative
- Diameter of ring (number)

Special Properties

• Strain free for Polarization or DIC

Features

- Correction collar for spherical aberration
- Iris
- Spring-loaded front end
- Lockable front end

Objective Designations

Abbreviation	lype	
Achro, Achromat Achromatic aberration correction		
Fluor, Fl, Fluar, Neo	fluar, Fluotar Fluorite aberration correction	
Apo	Apochromatic aberration correction	
Plan, Pl. Achroplan,	Plano Flat Field optical correction	
EF. Acroplan	Extended Field (field of view less than Plan)	
N. NPL	Normal field of view plan	
Plan Apo	Apochromatic and Flat Field correction	
UPLAN	Olympus Universal Plan (Brightfield, Darkfield, DIC, and Polarized Light)	
LU	Nikon Luminous Universal (Brightfield, Darkfield, DIC, and Polarized Light)	
L, LL, LD, LWD	Long Working Distance	
ELWD	Extra-Long Working Distance	
SLWD	Super-Long Working Distance	
ULWD	Ultra-Long Working Distance	
Corr, W/Corr, CR	Correction Collar	
I, Iris, W/Iris	Adjustable numerical aperture (with iris diaphragm)	
Oil, Oel	Oil Immersion	
Water, WI, Wasser	Water Immersion	
HI	Homogeneous Immersion	
Gly	Glycerin Immersion	
DIC, NIC	Differential or Nomarski Interference Contrast	
CF, CFI	Chrome-Free, Chrome-Free Infinity-Corrected (Nikon)	
ICS	Infinity Color-Corrected System (Zeiss)	
RMS	Royal Microscopical Society objective thread size	
M25, M32	Metric 25-mm objective thread;	
Metric 32-mm objective thread		
Phase, PHACO, PC	Phase Contrast	
Ph 1, 2, 3, etc.	Phase Condenser Annulus 1, 2, 3, etc.	
DL, DLL, DM, BM	Phase Contrast: Dark Low, Dark Low Low, Dark medium, Bright Medium	
PL, PLL	Phase Contrast: Positive Low, Positive Low Low	
PM, PH	Phase Contrast: Positive Medium, Positive High Contrast (Regions with higher refractive index appear darker.)	
NL, NM, NH	Phase Contrast: Negative Low, Negative Medium, Negative High Contrast (Regions with higher refractive index appear lighter.)	
P, Po, Pol, SF	Strain-Free, Low Birefringence,	
for Polarized Light		
U, UV, Universal UIS	UV transmitting (down to approximately 340 nm) for UV-excited epifluorescence Universal Infinity System (Olympus)	
M	Metallographic (no coverslip)	
NC. NCG	No Coversijo	
FPI	Oblique or Epi illumination	
TI I	Transmitted Light	
BBD. HD. B/D	Transmitted Light Bright or Dark Field (Hell, Dunkel)	
D D D D D D D D D D D D D D D D D D D	Darkfield	
Н	For use with a heating stage	
U. UT	For use with a universal stage	
DI. MI. TI	Interferometry, Noncontact, Multiple Beam (Tolanski)	
	······································	