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Characterization of femtosecond optical waveform

by nonlinear wave mixing
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Let us begin with some background introduction.

I shall briefly review the working principles and construction of the common autocorrelators and a more advanced technique called "frequency resolved optical gating."
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In an autocorrelator, the laser pulse is split into two copies. 

One copy is delayed with respect to the other. The two copies are mixed in a nonlinear crystal, and the energy of the second harmonic wave is measured by a slow detector.

By adjusting the relative delay, one obtains the intensity autocorrelation function, which gives an estimation of the pulse duration.

However, because the mapping between waveform and the autocorrelation function is not one to one, autocorrelator cannot even measure the intensity profile, not to mention the phase profile of the pulse.
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A more powerful version is the interferometric autocorrelator.

The fringe envelopes give some information about the phase, such as the chirp of the pulse. But they are still not sufficient to determine the complete waveform.



Characterization of femtosecond pulses
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If we look at the waveform in the frequency domain, it is clear that the spectral amplitude, E(omega), can be easily measured with a spectrometer. 

Because no detector is sensitive to optical phase, it is the spectral phase, phi(omega), that is difficult to
measure. 

Therefore the essential problem of ultrafast waveform measurement is how to determine the spectral phase.




Frequency-resolved optical gating

D. J. Kane and R. Trebino, Opt. Lett. 18, 823 (1993).
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In recent years, a new technique called "frequency resolved optical gating" has been developed. In frequency resolved optical gating, the second harmonic wave is analyzed by a spectrometer.

This is different from intensity autocorrelation, which measures only the energy. For each delay tau, a power spectrum is recorded. The resulting data is a two-dimensional array called spectrogram. The ultrafast waveform can be reconstructed from the spectrogram by interative algorithm. 

This is how the iteration goes: one makes an initial guess of the phase of the spectrogram. 

Then, by Fourier transformation and integration, the spectrogram is reduced to a "hypothetic" waveform, which is likely to be incorrect. Next, one uses this "hypothetic" waveform to construct a spectrogram and compares with the measured spectrogram. Again, the constructed spectrogram is likely to be incorrect. But at this point, one can replace its amplitude with the measured amplitude, as a partial correction. 

The partially corrected spectrogram is once again Fourier transformed and integrated to obtain another improved "hypothetic" waveform. This loop continues until it converges.




1. two-photon interferometry

2. waveform reconstruction algorithm

All electronic phase retrieval measurement using

nonlinear detectors
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All the methods discussed above require nonlinear wave mixing. But nonlinear wave mixing has these disadvantages.

First, group delay dispersion causes pulse broadening and walk-off, which reduced the measurement accuracy.

Second, phase matching bandwidth is limited. This also reduces the measurement accuracy.

In addition, nonlinear wave mixing is inefficient, therefore it cannot be used on weak signals.



Limitations:

Dispersion: causes pulse broadening and walk-off.

Phase-matching bandwidth: requires thin crystal.

Inefficient process: limits sensitivity.
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An alternative is using an nonlinear detector. Here is the band structure of GaAsP.

For 800 nm light the bandgap is larger than the photon energy, so it requires two photons to excite the
electrons.




Band Structure of GaAsP
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The advantages of using two-photon semiconductor detectors are large bandwidth, high sensitivity, easy alignment, no phase matching requirements, and low cost.




Advantages of using two-photon photodiodes for nonlinear measurements

Bandwidth: nearly uniform up to 200 nm.

Sensitivity: up to 1.42 nA/mW ,
2

comparable to 100- mµ BBO + photomultiplier.

Simplicity: easy alignment and no phase-

matching requirements.

Low cost: less than US$100.
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4.

Ref: J.-K. Ranka and et al., Optics Letters 22, pp.1344, (1997).
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Now I shall present our new development in ultrafast waveform measurement technique. 

The most distinguished feature of this technique is that it uses detector nonlinearity, instead of wave mixing, to measure the waveform.




Two-photon photodiode-based phase-retrieval autocorrelator
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This is a nonlinear interferometer for complete waveform measurement. One output port is measured with a linear photodiode. The other is measured with a two-photon photodiode.




Spectral components of the autocorrelation function
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By Fourier transformation, one can extract from the nonlinear interference fringes the spectral amplitude of the intensity, and the spectral amplitude of the E-square field. One can also extract the spectral amplitude of the E field from the linear interference fringe.




Unique phase retrieval from measured spectrums

uniquely determine the waveform
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It has been proved mathematically that these three functions, spectral amplitude of the intensity, spectral amplitude of the E-square field, and spectral amplitude of the E field, uniquely determines the waveform. 

However, there exists no explicit
equation to calculate the waveform. 
How can we reconstruct the waveform from these three functions?




1. crossover

3. selection

2. mutation

Genetic Algorithm
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We use the genetic algorithm. Genetic algorithm is a global optimization algorithm that borrows the idea of biological evolution.
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The phase function is represented by an array of numbers. The array is called the gene, and the numbers are called the bases.




Basic operation: crossover
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The algorithm uses three steps, crossover, mutation, and selection, to search for the phase function that matches best to the measurement data. 
Crossover is simply a swap of a segment of genes.




Basic operation: mutation
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Mutation is a random change of a base.




Basic operation: selection
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Selection is to select the next generation genes according to how good they fit the experimental data. 
From each phase function represented by a gene, we evaluate its error. The number of offspring a gene produces is set to be inversely proportional to
the error.

The error is simply the deviation between calculated spectral amplitudes and the measured ones.
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Demonstration 1: chirped pulses
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Here is an experimental demonstration. 

We pass a femtosecond pulse through 25 mm of glass to broaden the pulse duration, and at the same time make the phase profile parabolic. 

The reconstructed waveform agrees well with the expected change.
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Demonstration 2: double-peak pulse
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Here is another experimental demonstration. 

We split a femtosecond pulse, delay one copy, chirp the other copy, then
recombine them. This is to test how well the method resolves double peak pulses.

Again, the reconstructed waveform agrees with the expected one.




Converging rate in phase retrieval with genetic algorithm
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With a Pentium III 500 MHz computer, the convergence is reached in one second. This is close to the requirement for real time monitoring.




Two-photon
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This is the picture of our phase retrieval autocorrelator. The size is about that of a briefcase.




Potential applications

1. ultrafast spectroscopy

2. accelerator beam diagnosis
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Now we look at some potential applications.




Ultrafast pump-probe experiments
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In conventional ultrafast spectroscopy, time resolution is
achieved by pump and probe a system with ultrashort pulses.

In this transient absorption example, the pulse duration must be much
shorter than the energy transfer time scale.

However, short pulse means large bandwidth, therefore, the excitation extends to neighboring levels. This complicates the dynamics, making the data difficult to interpret.




It is possible to measure the material response with pulse

duration of the same time scale, thereby avoiding excessive

excitation bandwidth.
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This picture shows how the waveform is changed by the response function of the material. 

By measuring the complete waveform, instead of only the pulse energy, one can resolve the dynamics
with pulses of comparable duration, avoiding excessive excitation bandwidth. This will greatly simplify data interpretation.




Beam diagnosis

electron bunch
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I was suggested by the accelerator community that this technique can be useful for beam diagnosis. 

By looking into the synchrotron radiation, it is possible to know the electron density profile.




Summary

Slow nonlinear detectors can measure fast
signals, without nonlinear wave mixing.

The technique is demonstrated with ultrafast optics,
and can be used in other fields.

From nonlinear interference, complete waveform
can be reconstructed by the genetic algorithm.
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In summary, we have shown slow nonlinear detectors can measure fast signals, without nonlinear wave mixing.

From nonlinear interference, complete waveform can be reconstructed by the genetic algorithm. The technique is demonstrated with ultrafast
optics. Because it is based on general principles, it can be used in other fields.





